Volume 13 Supplement 1

18th Scientific Symposium of the Austrian Pharmacological Society (APHAR)

Open Access

Biophysical characterization of CaV1.4 L-type calcium channel mutants causing congenital stationary night blindness type 2 in humans

  • Klaus W Schicker1,
  • Verena Burtscher1,
  • Dagmar Knoflach1,
  • Anamika Singh2,
  • Thomas Stockner1 and
  • Alexandra Koschak1Email author
Contributed equally
BMC Pharmacology and Toxicology201213(Suppl 1):A69

DOI: 10.1186/2050-6511-13-S1-A69

Published: 17 September 2012

Background

CaV1.4 L-type calcium channels show unique biophysical properties such as slow inactivation due to the lack of calcium-dependent inactivation (CDI). These properties make CaV1.4 channels appropriate candidates for triggering persistent glutamate release at retinal photoreceptor cell synapses. Mutations in the CACNA1F gene encoding for the CaV1.4 α1 subunit are described in patients with X-linked congenital stationary night blindness type 2 (CSNB2). Impaired transmission between rod photoreceptor cells and second-order neurons manifests as night blindness and various other visual symptoms in the affected individuals.

Methods

The aim of this study was to investigate the functional properties of CaV1.4 mutants L849P and R1816stop compared to wild-type (WT) in transiently transfected tsA 201 cells (+β3,+α2δ-1) via whole-cell patch clamp technique using 15 mM Ba2+ and Ca2+ as charge carrier. For statistics, either Mann-Whitney (two groups) or Kruskal-Wallis test and Dunn’s Post hoc test (multiple comparisons) were used.

Results

L849P was mainly characterized by a reduced current density (pA/pF: WT: −16.3 ± 1.6 (n = 38), L849P: −2.5 ± 0.3 (n = 12), p < 0.0001; Ca2+), only minor, not significant (p > 0.05) changes in the voltage-dependent activation properties were observed. In presence of the dihydropyridin-activator BayK8644 (5 μM) the current density was increased ~10-fold (p < 0.001). The fold-increase in current density was comparable to WT. As expected R1816stop, which lacks an intrinsic C-terminal modulator (CTM), exhibited CDI (f-value: WT: 0.11 ± 0.03 (n = 8); R1816stop: 0.63 ± 0.02 (n = 22)) and shifted the voltage-dependence of activation to more negative voltages (V0.5act in mV: WT: 1.8 ± 0.3 (n = 74), R1816stop: −12.3 ± 0.3 (n = 23)). In presence of the CaV1.4-CTM; comprising the last 122 C-terminal residues WT conditions were fully restored, e.g. V0.5act 2.2 ± 1.0 mV (n = 14) (p < 0.0001).

Conclusions

We assume that the reduced current density observed in mutant L849P derives from decreased channel expression, which might be explained by a folding defect of the CaV1.4 channel protein rather than a reduced open probability. Moreover, the fact that the functional phenotype of the R1816stop can be rescued bears a potential pharmacotherapeutic concept based to the C-terminal modulatory mechanism present in CaV1.4 channels.

Notes

Declarations

Acknowledgements

Financial support was given by the Austrian Science Fund (FWF, grant P22526 to A.K.).

Authors’ Affiliations

(1)
Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna
(2)
Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck

Copyright

© Schicker et al; licensee BioMed Central Ltd. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement