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Role of astrocytes in manganese mediated
neurotoxicity
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Abstract

Astrocytes are responsible for numerous aspects of metabolic support, nutrition, control of the ion and
neurotransmitter environment in central nervous system (CNS). Failure by astrocytes to support essential neuronal
metabolic requirements plays a fundamental role in the pathogenesis of brain injury and the ensuing neuronal
death. Astrocyte-neuron interactions play a central role in brain homeostasis, in particular via neurotransmitter
recycling functions. Disruption of the glutamine (Gln)/glutamate (Glu) -γ-aminobutyric acid (GABA) cycle (GGC)
between astrocytes and neurons contributes to changes in Glu-ergic and/or GABA-ergic transmission, and is
associated with several neuropathological conditions, including manganese (Mn) toxicity. In this review, we discuss
recent advances in support of the important roles for astrocytes in normal as well as neuropathological conditions
primarily those caused by exposure to Mn.
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Manganese: general characteristics and toxicity
Mn is an essential trace metal, which is commonly found
in the environment. Mn is present in all tissues and is
required for the maintenance of proper function and
regulation of numerous biochemical/cellular reactions [1].
Mn is an integral component of multiple enzymes, includ-
ing glutamine synthetase (GS), mitochondrial superoxide
dismutase (SOD), arginase and pyruvate carboxylae [2]. On
the other hand, in humans excess deposition of Mn in
the central nervous system (CNS) leads to neurological
abnormalities, referred to as manganism [3]. Manganism is
characterized by variety of psychiatric, cognitive and motor
disturbances that resemble those inherent to Parkinson’s
disease (PD) [4]. However, the primary brain regions
targeted by Mn are the globus pallidus and striatum of
the basal ganglia, whereas neurodegeneration in PD is
predominantly confined to the substantia nigra [5].
In the early stages of manganism, patients display

psychotic symptoms, which progress to chronic distur-
bances in extrapyramidal circuits, leading to postural
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instability, dystonia, bradyskinesia, micrographia, mask-like
facial expression and speech disturbance [6-9]. Mn toxicity
is a potential occupational health hazard in workers in
ferroalloy plants, automotive repair technicians, battery
manufacturers and welders [10-12]. Increased Mn levels in
serum have been noted in chronic liver failure as a result of
the inability to excrete the metal via the biliary system [13].
In addition, Mn pollution has been a subject of environ-
mental concern because of consumption of contaminated
water containing high levels of the metal as well as expo-
sures from soy-based infant formulas and total parenteral
nutrition [14]. Health risks associated with Mn exposure
have also been associated with organic Mn-containing
pesticides, such as Mn ethylenebis-dithiocarbamate
[15]. An organic Mn compound methylcyclopentadienyl
manganese tricarbonyl, a Mn derivative, is used as an
antiknock agent in automobile fuels [16].
Mn transport within the CNS is mediated by several

transporter proteins as a free ion or a non-specific
protein-bound species [17]. In the 3+ oxidation state Mn
binds to the transferrin receptor (TfR) and its transport
competes with iron (Fe) [18]. Transport of Mn in the 2+

oxidation state is mediated by the family of natural
resistance-associated macrophage proteins (Nramp), the
divalent metal transporter-1 (DMT-1) [19,20]. Moreover
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additional channels/transporters have been identified as
Mn-transporting carriers. These include the divalent
metal/bicarbonate ion symporters ZIP8 and ZIP14, various
calcium channels, the solute carrier-39 (SLC39) family of
zinc transporters, park9/ATP13A2, the magnesium (Mg)
transporter hip14 and the transient receptor potential
melastatin 7 (TRPM7) [21], to name a few.
The mechanisms of Mn neurotoxicity are not completely

understood. Oxidative/nitrosative stress (ONS) has been
implicated in Mn-induced adverse effects [22,23]. Mn
preferentially enters the mitochondrial matrix via the
calcium (Ca2+) uniporter [24]. It has slow clearance
from mitochondria leading to increased matrix Ca2+ and
reactive oxygen species (ROS) generation [25]. Mn also
affects the antioxidant system by depleting glutathione
(GSH) and glutathione peroxidase [26]. In addition,
activation of oxidative stress-sensitive kinases and tran-
scription factors, including nuclear factor- NF-κB has been
implicated to mediate the neurotoxicity of Mn [27,28]

Astrocytes in the central nervous system function and
dysfunction
General role of astrocytes in brain function: interaction with
neurons
Astrocytes are key regulators in brain function, char-
acterized predominantly via their close interaction
with neurons. Astrocyte metabolism, including energy
generating pathways and amino acid homoeostasis is
tightly coupled to that of neurons. This part of the review
will discuss aspects of astrocyte metabolism which are
involved in regulating key neuronal functions.
The metabolic relationship between astrocytes and

neurons is critical for energy metabolism as well as for
the synthesis of neurotransmitters [29]. Neurons are
dependent upon astrocytes since they lack the enzyme
pyruvate carboxylase (PC) and therefore dependent on
astrocytes for de novo synthesis of glutamate (Glu) as
well as for replenishment of Krebs cycle intermediates
[30-32]. Moreover, Glu is not efficiently transported across
the blood–brain barrier; thus astrocyte derived glucose
serves as a precursor for synthesis of this neurotransmitter
[33], and maintenance of optimal Glu levels require
astrocytic support [34].
A major portion of astrocytic Gln is critical for

maintaining Gln supply to Glu-ergic terminals as well as
for generating neurotransmitters. Gln released from
astrocytes via the bi-directional functioning amino acid
systems N and ASC is taken up into neurons by the
unidirectional system A [35,36]. In neurons Gln is
metabolized to Glu, generating indirectly γ-aminobutyric
acid (GABA) as well as the tricarboxylic acid (TCA) cycle
intermediate, α-ketoglutarate (α-KG) [29]. In turn, Glu re-
leased from neurons can be transported to the astrocyte via
glutamate transporters [see below], where it is amidated
to Gln, completing the metabolite shuttling between astro-
cyte and neurons, referred to as the glutamine/glutamate-
GABA cycle (GGC). Several enzymes which are necessary
to ensure CNS glutamate and GABA homeostasis are
heterogeneously distributed among neurons and astrocytes
[37]. The glutamine synthesizing enzyme, GS, is exclusively
localized in astrocytes [38], although few studies have
reported its expression in both oligodendroglia and
microglia under pathological conditions [39,40]. Studies
in neuron-astrocyte co-cultures demonstrated that GS
expression in the latter is positively regulated by neurons,
and this effect appears to be mediated by neuron-derived
Glu or trophic factors, requiring direct contact between
astrocytes and nerve cell matrix [41,42]. An in situ study
suggested that in the cerebellum phosphate-activated
glutaminase (PAG) is primarily located in neurons rather
than astrocytes [43], although a low activity of this enzyme
has been observed in cultured astrocytes [43,44].
The metabolic neuronal-astrocytic interaction is well

demonstrated by the dependence of neurons on astrocyte-
derived thiols for optimal maintenance of stable con-
centrations of GSH [45]. GSH, the main antioxidant
constitutes ~90% of the intracellular non-protein thiols
and plays a prominent role in the detoxification of
ROS and neutralization of organic hydroperoxides. It is
noteworthy that GSH levels are lower in neurons than in
astrocytes [46] and that cysteine derived from astrocytes is
essential for the maintenance of stable GSH levels in
neurons. In general, neuronal stores of GSH are largely
dependent upon astrocytic stores, and neurons are more
vulnerable than astrocytes to oxidative stress. Several
co-culture studies have elegantly demonstrated that astro-
cytes protected neurons from toxicity by a GSH-dependent
mechanism [47,48].
Astrocytes also play a pivotal role in neurometabolic

coupling, referred to as the astrocyte neuronal lactate
shuttle hypothesis (ANLSH). ANLSH invokes that glucose
enters the CNS via astrocytic processes [49]. ANLSH
involves glutamate-stimulated aerobic glycolysis and uptake
of Glu by astrocytes. The ensuing activation of the
Na+-K+-ATPase triggers glucose uptake and processing
via glycolysis, thus mediating release of lactate from astro-
cytes [50]. Lactate can be shuttled into neurons where it is
used to meet their energy demand and works as a potent
neuroprotective agent [51]. More recently, the alternative
neuron–astrocyte lactate shuttle (NALS) hypothesis was de-
veloped, suggesting that depending on the thermodynamic
and kinetic status of the cytosolic and mitochondrial redox
states, lactate transfers from neurons to astrocytes [52]. In
general, studies support the notion that neurons have the
highest energy demand of all neural cells and are most
vulnerable to energy failure [53]. It is important to
note that recent modeling studies of astrocyte-neuron
metabolic interactions have minimized the role of lactate
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as a major energy agent, suggesting that neurons are also
capable of utilizing different fuel sources for incorporation
into metabolic pathways, such as glucose, ketone bodies
and fatty acids [54].
Intermediate filament proteins expressed in astrocytes,

such as glial fibrillary acidic protein (GFAP) and vimentin,
are involved in processes by which astrocytes control
neurogenesis as well as other aspects of neural plasticity
and regeneration. The ablation of GFAP and vimentin
increases axonal and synaptic regeneration in mice [55-58].
Furthermore, thrombospondins extracellular matrix
proteins secreted by astrocytes have been shown to
promote synaptogenesis during development as well as
in experimental mouse models of stroke [59].
It is noteworthy that astrocytes also play a dynamic

role in CNS function by maintaining the restrictive
properties of the blood–brain barrier (BBB). As an essential
neurovascular component, astrocytes directly regulate the
properties of this barrier. Furthermore, astrocytes can
regulate the neurogenic niche indirectly by regulating the
accessibility of blood-borne factors/molecules which are
involved in neurogenesis [60].
Finally, astrocytes release factors that sustain neuronal

function and viability. Astrocytes synthesize and secrete a
wide range of neurotrophic and growth factors, cytokines,
extracellular matrix proteins, proteoglycans and cholesterol
which are involved in neuronal survival, proliferation,
differentiation and synaptogenesis [61,62].

Astrocytes and manganese in some neuropathological
conditions: focus on Alzheimer’s disease (AD) and chronic
hepatic encephalopathy (HE)
Astrocytes play a critical role in the progression and
outcome of neuropathological processes by reducing
neural damage and promoting the revascularization of
the surrounding tissue through reactive astrogliosis and
neuroinflammation, the latter characterized by secretion
of pro-inflammatory factors, such as interleukins [62-66].
On the other hand, reactive astrogliosis has been shown
to be associated with functional impairment of astrocytes,
and diminished neuronal support by astrocytes has been
invoked in multiple neuropathological conditions. For
example, in mice expressing human mutant Tau, a
model of neurological disorders, an increase of GFAP-
immunoreactive astrocytes and neuronal loss were
shown in the spinal cord [67]. Other studies have im-
plicated astrocyte-mediated Glu recycling in the patho-
genesis of Alzheimer’s disease (AD) [68]. Impairment in
astrocytic Glu transport and reduction in the expression of
the Glu transporters, L-glutamate-L-aspartate transporter
(GLAST) and glutamate transporter 1 (GLT-1) has been in-
voked in a mouse model of Tau pathology. In homogenates
of AD cortex, GFAP and GLAST expression were shown
to inversely correlate with increased expression of GFAP
and down regulation of GLAST as well as increased Braak
stage [69]. Additionally, major disruption in Gln metabol-
ism has been shown in AD. For example, GS activity in cor-
tical homogenates from AD brain was found to be lower in
comparison to homogenates derived from non-demented
brains [70]. Moreover, the concentration of Glu was shown
to be elevated, while the concentration of Gln was lower in
cerebrospinal fluid of AD patients [71].
It is important to note that Mn was shown to induce

cell swelling in cultured astrocytes and that astrocytic
pathology, such as gliosis and Alzheimer type II astro-
cytes were observed in both animal and cell culture
models in response to manganese exposures [72,73].
Morphologic changes of astrocytes are also a major
feature of hepatocerebral disorders, including chronic
hepatic encephalopathy (HE) [74]. Hepatic encephalop-
athy is a clinical complication of liver failure with a wide
spectrum of neuropsychiatric complication. Glial cells
were described as a primarily target in HE and as a cell
responsible for the neuronal pathology [75]. The most
prominent histopathological changes found in HE asso-
ciated with chronic liver failure include Alzheimer’s type
II astrocytosis and astrocytic swelling, leading to brain
edema [75-77]. Notably, Mn was found to be a signifi-
cant etiologic factor in low–grade brain edema observed
in HE, affecting the dopaminergic neuronal system and
dopaminergic receptor activity [73,78]. Interestingly, Mn
and another important etiologic factor in HE, namely
ammonia, cause similar morphologic and functional
changes in astrocytes. Both are potent glial toxins
and have the capacity to act synergistically to activate
the mitochondrial benzodiazepine receptor leading to
increased synthesis of neurosteroids and GABAergic
signaling [79]. Moreover Mn and ammonia downregulate
the astrocytic Glu transporters, leading to impairment in
neurotransmission [80].

Manganese involvement in astrocyte function
Brain Mn is preferentially deposited in astrocytes given the
presence of high-capacity transporters within these cells.
The concentration of Mn in astrocytes is 50–60 higher than
in neurons [81]. At the subcellular level, the highest Mn
concentration in astrocytes is noted within mitochondria
[82]. Mn causes oxidative stress in primary cultures of
astrocytes, leading to the mitochondrial dysfunction and
energy insufficiency [22,83]. One of the possible mechanism
of Mn-dependent failure of astrocytes to maintain antioxi-
dant defence mechanisms is disruption of glutathione
(GSH) synthesis [72,84,85]. In addition, Mn has a similar
effect on taurine in both neurons and co-cultures; the latter
also serves as a free radical scavenger and important
neuroprotective amino acid [86].
Brain energy metabolism depends almost exclusively

on the oxidation of glucose [87]. Glucose metabolism
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leads to the biosynthesis of neurotransmitters such as
Glu, aspartate, and GABA [38]. Mn causes metabolic
changes in astrocytic glucose metabolism by inhibition
of the astrocyte-specific enzyme, GS [88,89]. Mn also
plays an important role in brain energy metabolism by
affecting the key anaplerotic, glial-specific enzyme, PC
[90,91]. These Mn-induced effects on astrocytic pathology
may cause a dyshomeostasis between neurons and astro-
cytes, leading to further neuronal synaptic dysfunction and
activation of an excitotoxic state.
Mn was also shown to induce the expression of astrocytic

inflammatory products as well as signal transduction
mediators [72,92]. A recent study has shown increased
transport of the nitric oxide (NO) substrate, L-arginine
in Mn exposed astrocytes [93]. Other reports confirmed
that Mn affects astrocytic inducible nitric oxide synthase
(iNOS) expression and NO production upon activation
of C6 glioma cells with LPS/ TNFγ or primary astrocyte
cultures with TNFα/TNFγ [94,95]. Astrocytic exposure
to Mn is also associated with cell swelling secondary to
NOS activation. Moreover, increased expression of the
water channel protein aquaporin-4 (AQP4), a predominant
astrocytic isoform, has been implicated in Mn-mediated cell
swelling [96].
As mentioned above, astrocytes support multiple

neuronal functions through multiple processes; thus
Mn-mediated disturbances in astrocytes function
would be expected to cause neuronal demise. Indeed,
an in vivo study revealed that Mn-mediated neuronal
injury in the striatum and the globus pallidus is associated
with primary dysfunction of astrocytes via mechanisms
involving NO [94]. An In vitro study demonstrated that
Mn inhibits the ability of astrocytes to promote neuronal
differentiation by a mechanism that involves oxidative
stress and a reduction in levels of the extracellular matrix
protein, fibronectin [97].

Glutamine in the central nervous system
Gln abounds in the CNS, and its concentrations are at
least one order of magnitude higher than any of the
other amino acid in the interstitial and cerebrospinal
fluid (CSF) [98]. Gln plays a prominent role in general
CNS metabolism by supporting tissue homeostasis. As
discussed above, Gln is the amino acid that directly couples
ammonia metabolism to the synthesis of the amino acid
neurotransmitter Glu, and indirectly to GABA. This reac-
tion requires active communication between neurons and
astrocytes, and is accomplished by the GGC cycle. The
major role of the GGC is to thwart the extracellular Glu
levels, thus preventing excitotoxicity. Moreover, Gln cycling
between neurons and astrocytes produces compounds that
are direct precursors of the tricarboxylic acid (TCA) cycle
intermediate α-ketoglutarate, thus maintaining the high
demand for energy within the brain [29].
Transport of Gln across the membranes of CNS cells
is mediated by multiple transport systems, characterized
by their overlapping substrate specificities, substrate
affinities and cellular distribution [36]. Among these
systems, the sodium-dependent systems ASC, A and N play
dominating roles in Gln turnover. Immunocytochemical
analysis and Gln transport measurements both in vivo
and in vitro revealed the compartmentation of Gln-
transporting proteins between astrocytes and neurons.
The bi-directional system N transporters SNAT3 or
SNAT5 which catalyze Gln transport, are exclusively lo-
cated within astrocytes. SNAT3 is believed to specifically
mediate Gln efflux from astrocytes [99,100]. In addition to
System N, release of Gln from astrocytes is mediated by
other transport systems, such as the sodium-independent
System L (LAT2) and the sodium-dependent System ASC
(ASCT2) [98,101,102]. The unidirectional system A
transporter SNAT1, which catalyzes Gln uptake, is
predominately expressed in neurons [98]. A portion of
astroglial-derived Gln across the BBB to the periphery is
mediated by system N transporters along with some add-
itional contribution from the System L transporters [103].

Manganese and glutamine turnover
The Gln/Glu-GABA cycle represents a complex process,
since Gln efflux from astrocytes must be met by its
influx in neurons. Mn toxicity is associated with the
disruption of both of these critical points in the GGC. In
cultured astrocytes, pre-treatment with Mn inhibits the
initial net uptake of Gln in a concentration-dependent
manner [83]. Mn added directly to astrocytes induces
deregulation in the expression of SNAT3, SNAT2, ASCT2
and LAT2 transporters [83]. Corroborating the changes in
transporter protein expression levels, astrocytes treated
with Mn displayed a significant decrease in Gln uptake
mediated by the transporting Systems N and ASC, and a
decrease in Gln efflux mediated by Systems N, ASC and L
(Table 1) [104].
The contribution of PKC signalling to Mn-induced

dyshomeostasis in Gln transport has been investigated in
cultured astrocytes. A recent study revealed that PKC
inhibition by its general inhibitor bisindolylmaleimide
II (BIS II) effectively reversed the Mn-induced down-
regulation in Glu uptake. Treatment of primary astrocyte
cultures with a PKC stimulator caused decreased Gln
uptake mediated by Systems ASC and N, and decreased
expression of ASCT2 and SNAT3 protein levels in cell
lysates and in plasma membranes [105]. It is noteworthy
that both transporters contain putative PKC phosphoryl-
ation sites, conserved in the human, rat and mouse
[106,107]. In addition, a recent in situ study showed
that PKC activation induced phosphorylation and in-
ternalization of SNAT3 [108]. Furthermore, increased
binding of PKCδ to ASCT2 and SNAT3 upon exposure



Table 1 Manganese involvement in glutamine/glutamate-GABA cycle: disruption of glutamine and glutamate
transporters

Name of transporter Changes down (down-regulation) mediated by manganese Cellular localization References

Glutamine transporter System

SNAT3 System N mRNA and protein expression; function(uptake and efflux) astrocytes [67], [81]

SNAT2 System A mRNA and protein expression astrocytes [81]

ASCT2 System ASC protein expression; function (uptake and efflux) astrocytes [81]

LAT2 System L mRNA and protein expression; function (uptake) astrocytes endothelial cells [81]

Glutamine transporter

GLAST protein expression; function (uptake) astrocytes [98], [103]

GLT-1 mRNA and protein expression; function (uptake) astrocytes [98], [103]
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to Mn has been identified by co-immunoprecipitation. In
contrast, Mn exposure causes increased phosphorylation of
PKCδ in cultured astrocytes. Taken together, these findings
suggest a prominent role of PKCδ in Mn–mediated
disruption of Gln turnover (Figure 1).

Ubiquitin-mediated proteolytic system in Mn-mediated
disruption of SNAT3
A recent study revealed that the astrocytic transporter
SNAT3 possesses the highest affinity/specificity to Gln
Figure 1 A proposed model describing the mechanisms of Mn-mediate
to the deregulation of Gln uptake by dysfunction of SNAT3 and ASCT2 activit
reverses this effect (1); Mn exposure leads to the deregulation of Glu uptake b
Gö6976 (PKCα inhibitor) , ROT (rottlerin, PKCδ inhibitor) and Z-VAD-FMK (Z-Ala
this effect (2); Mn exposure leads to the activation of PKCδ and PKCα (3); addi
proteolytic cleavage (4); proteolytically activated PKCδ translocates to the nuc
SNAT3, ASCT2 and GLT1 expression involves PKCδ signalling (6,7); GLAST expr
among of all the investigated carriers, and that it is the
most sensitive to Mn exposure. This transporter is readily
degraded subsequent to a relatively short exposure
to Mn [104]. In addition, it was suggested that the
ubiquitin-mediated proteolytic system might be involved
in the Mn-mediated down-regulation of SNAT3 [105].
Mn exposure has been noted to increase both free ubiqui-
tin levels and ubiquitinated proteins in primary cultures of
astrocytes. Furthermore, we recently showed a selective
interaction of SNAT3 with the ubiquitin ligase, Nedd4-2
d disruption of glutamine/glutamate-GABA cycle. Mn exposure leads
y, while incubation with BIS II (bisindolylmaleimide, general PKC inhibitor)
y dysfunction of GLT1 and GLAST activity, while incubation with BIS II,
-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone caspase inhibitor) reverses
tionally, Mn mediates activation of PKCδ by caspase-3-dependent
leus and mediates DNA fragmentation (5); Mn-mediated disruption of
ession is down regulated by Mn via PKCα signalling (8).
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(neuronal precursor cell expressed, developmentally
down-regulated 4–2) upon Mn exposure in astrocytes
[105]. It is noteworthy that Nedd4-2 mediates the
down-regulation of numerous membrane channels and
transporters via ubiquitination and subsequent deg-
radation by the proteasome [109]. Polyubiquitination
plays a key role in transporter sorting and targeting for
lysosomal degradation, which also involves the proteasome
[110]. A recent study has confirmed that serum- and
glucocorticoid-induced kinase 1 (SGK1) phosphorylates
the ubiquitin ligase Nedd4-2, decreasing the interaction
between Nedd4-2 and target proteins [111]. Furthermore,
in a Xenopus laevis oocyte expression system it has been
suggested that SNAT3 is down regulated by Nedd4-2,
and that this effect is restored by SGK1 [112]. Notably,
Mn exposure leads to decreased SGK1 expression and
phosphorylation, suggesting Nedd4-2/SGK1 involvement
in Mn-mediated degradation of SNAT3. These findings,
concomitant with evidence that chronic Mn exposure
alters the expression of genes associated with the
ubiquitin/proteasome system [113], suggest that Mn
disrupts SNAT3 expression or function by promoting
its ubiquitination [105].
It has also been shown that PKC activation results in

the ubiquitination of the dopamine transporter (DAT),
leading to its internalization and degradation [114,115].
Furthermore, the knockdown of Nedd4-2 resulted in a
dramatic reduction in the PKC-dependent ubiquitination of
DAT [115]. PKC activation also led to hyper-ubiquitination,
and increased the interaction between SNAT3 and
Nedd4-2. PKC stimulation caused a decrease in astrocytic
Gln uptake mediated by System N and significantly de-
creased SNAT3 protein levels, while Mn exposure activated
PKCs [82]. Taken together, these findings demonstrate that
Mn-induced deregulation of SNAT3 function is likely
mediated via PKC signalling and accompanied by an
increase in ubiquitin-mediated proteolysis.

Manganese and glutamate transport
Glu is the prominent excitatory neurotransmitter in the
mammalian CNS [116]. Regulation of synaptic Glu
concentrations is critical to normal CNS function. Glu
released into the synaptic cleft in taken up by Glu trans-
porters mainly present perisynaptically on astrocytes. Only
a small amount is taken up by presynaptic neurons. Astro-
cytes take up glutamate via the sodium-dependent Glu
transporters, GLAST, GLT-1 and the sodium-independent
chloride-dependent Glu-cystine antiporter [29]. Accord-
ingly, astrocytes regulate the levels of extracellular Glu and
influence synaptic activity. Using antisense knockdown or
pharmacological inhibition of Glu transporters, it has been
demonstrated that disruption of transporter function
increases the vulnerability of neurons to excitotoxic insults
[31]. The functional relevance of the Glu transporters was
demonstrated in animal studies, where knockout of GLAST
resulted in impaired performance on an accelerating
rotarod, and partial loss of GLT-1 led to hind limb paralysis
[117,118]. Impairment in astrocyte-mediated recycling of
Glu represents the major contributing factor to neuropath-
ology, and it has been invoked in the etiology of several
neurodegenerative diseases, including AD, Parkinson
disease (PD) and amyotrophic lateral sclerosis (ALS) [119].
Several studies established that Mn disrupts Glu

transporting systems leading to both a reduction in Glu up-
take and elevation in extracellular Glu levels [120] (Table 1).
For instance, Chinese hamster ovary (CHO) cells
transfected with GLAST or GLT-1 show impairment in
Glu transport in response to Mn exposure [121]. Long-
term airborne Mn exposure leads to the down regula-
tion of GLAST and GLT-1 In non-human primate
brain, both at the mRNA and protein levels [84]. Al-
though the mechanisms of Mn–mediated disruption in
transporter expression have yet to be completely under-
stood, lysosomal proteolysis has been implicated in GLT-1
degradation upon exposure to this metal [122,123].
PKC signalling has been implicated in Mn-induced

down-regulation of Glu turnover in primary astrocyte
cultures [124]. A recent study revealed that PKC
stimulation by α-phorbol 12-myristate (PMA) significantly
decreased astrocytic Glu uptake, while treatment
with the general PKC inhibitor BIS II, reversed the
Mn-induced down regulation of Glu transport. Moreover,
Mn-dependent down-regulation in astrocytic Glu uptake
was reversed by specific inhibitors of PKCδ - rottlerin
(ROT), and PKCα- Gö6976 or caspase 3 inhibitor-
Z-Ala-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone
(Z-VAD-FMK) [122]. Similarly, Mn-induced down-
regulation of GLT1 protein level was reversed by Bis II,
ROT, Gö6976 and Z-VAD-FMK inhibitors. Mn-dependent
down-regulation of astrocytic GLAST expression was
also attenuated in the presence of PKCα and casapase-3
inhibitors. Furthermore, direct association between GLT-1,
but no GLAST, and the PKCδ or PKCα isoforms, and
Mn-induced increases in PKCδ-GLT-1 interaction have
been noted in a co-immunoprecipitation study [122].
The role of the PKCδ isoform in Mn-induced deregu-

lation of Glu turnover was estimated by a knockdown
study. Astrocytes transfected with shRNA against PKCδ,
(but not with PKCα) showed lessened sensitivity to Mn
compared to those transfected with control shRNA,
suggesting a predominant role for the PKCδ isoform in
Mn-dependent down-regulation of Glu turnover [124].
Parallel to these observations, recent evidence shows
that PKC signalling is critical in Glu transporter regulation
[104]. PKC-mediated decrease in Glu transporter function
may involve changes in transporter activity or number/
expression by increasing the rates of endocytosis or
decreasing the redistribution of the transporters from
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a subcellular compartment to the plasma membrane.
Another possible mechanism of PKC-induced negative
regulation of Glu transporters invokes down-regulation of
transporter activity at the cell membrane. For example, in
C6 glioma cells transfected with GLT-1 and in primary
cultures endogenously expressing GLT-1, activation of PKC
rapidly down regulates GLT-1 cell surface expression [124].
As far as GLAST transporter function, several groups
found contradictory results, showing decreases as well as
increases in GLAST function in response PKC activation
[125]. Several studies using cell cultures as well as animal
models indicate that proteolytic activation of PKCδ by
caspase-3 plays a major role in the regulation and execution
of apoptosis [126]. In addition, previous studies showed
that caspase-3-dependent PKCδ activation not only con-
tributes to neuronal apoptosis, but also has a regulatory
role in amplification of the apoptotic cascade during neuro-
toxic stress inherent to Mn treatment via positive feedback
loop between PKCδ and caspase-3 activation [127]. Proteo-
lytic activation of PKCδ promotes its nuclear translocation
and PKCδ-dependent mediation of DNA fragmentation.
Notably, Mn toxicity is associated with caspase-3 activation
in several in vitro and in vivo models [127-130] as well
as increased PKCδ’s nuclear translocation [124]. Co-
treatment with the PKCδ inhibitor ROT or the caspase-
3 inhibitor Z-DEVD-FMK blocked Mn-induced DNA
fragmentation in mesencephalic dopaminergic neuronal
[N27] cells. Additionally, N27 cells expressing a catalytically
inactive PKCδ protein or a caspase-3 cleavage resistant
PKCδ protein were found to be resistant to Mn-mediated
apoptosis [127].
A mechanism implicating caspase-3 and PKCδ inhibition

has been invoked for the Mn-mediated disruption of
Glu and Gln transport in astrocytes [124]. Collectively,
activation of PKC signalling seems to be a ubiquitous
mechanism for the regulation of GGC by Mn (Figure 1).

Review and Conclusion
Astrocytes are involved at multiple levels in brain (patho)
physiology via their interaction with neurons. The role of
astrocytes in neuronal activity and survival is well illustrated
in pathological conditions mediated by disruption of the
Gln/Glu-GABA cycle. The deregulation of Gln homeostasis
may consequently diminish the availability of this amino acid
to neurons. These effects are posited to lead to impairment
of Glu-ergic neurotransmission and are very well recognized
in Mn neurotoxicity. The findings reported in this review
suggest that a better understanding of Gln cycling between
neurons and astrocytes may provide knowledge about nor-
mal brain function and highlight potential molecular tools
for therapeutic interventions in pathology caused by Mn.
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