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Abstract

Background: Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI
interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient
small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one
face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical
peptides.

Method: We performed computational sequence- and structure-based analyses in order to evaluate several key
physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl
and its derivatives.

Results: Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding
alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension
roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding
pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed
in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots.

Conclusions: The presence of hydrophobic cavities at the protein surface with a more complex shape than the
entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical
peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites
can be helpful for further development of small molecules targeting alpha-helix binding proteins.
Background
Protein-Protein Interactions (PPIs) are key to many cellu-
lar processes. Abnormal PPIs contribute to many disease
states and as such, PPIs represent today a new class of
drug targets essentially unexploited for drug discovery.
Indeed, the size of the human interactome has been esti-
mated to be between 300,000 [1] and 650,000 interactions
[2]. In the last decade many studies have been performed
in order to target PPIs [3]. Several small-molecule inhibi-
tors of PPIs have been demonstrated therapeutic potential
[4-8]. However, efficient targeting of PPIs is still being
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reproduction in any medium, provided the or
considered as an important challenge [3,9,10]. In contrast
to enzyme-substrate interactions, protein-protein recogni-
tion often occurs through flat surfaces or wide shallow
grooves. Recent structural analyses of PPI interfaces and
small molecules disrupting PPIs suggested that such li-
gands might mimic the structural characteristics of the
protein partner [6,11]. To facilitate the discovery of new
PPI small-molecule inhibitors, the characterization of PPI
interfaces [12,13] and the prediction of putative ligand
binding sites are essential. Physicochemical properties of
both ligand and protein are key to mediate the binding
[14], such as cavity sizes, shape complementarity, electro-
static potential and hydrophobicity [12,15].
The role of alpha-helical peptides in mediating many

PPIs is well demonstrated and development of small or-
ganic molecules mimicking such peptides becomes im-
portant [16]. Recent studies have been carried out on
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:maria.miteva@univ-paris-diderot.fr
http://creativecommons.org/licenses/by/2.0


Isvoran et al. BMC Pharmacology and Toxicology 2013, 14:31 Page 2 of 11
http://www.biomedcentral.com/2050-6511/14/31
the whole Protein Data Bank (PDB) in order to establish
a druggability profile of alpha-helix mediated PPIs and
to predict which of them could bind a small molecule
[17]. More specifically, terphenyl and its derivates are
small organic molecules [18-26] mimicking one face of
an alpha-helical peptide, i.e. the side chains of three key
residues occupying positions i, i+3 and i+7 [25,26] or i,
i+4 and i+7 [20] of the bound helix. It has been sug-
gested that terphenyl compounds can serve as pharma-
cological probes because they are membrane permeable
[22]. Terphenyl 1 and 2, which mimic the calmodulin
binding face of smooth muscle myosin light chain kinase
(smMLCK), have been shown to inhibit the interactions
of calmodulin (CaM) with the enzyme 3'-5'-cyclic nu-
cleotide phosphodiesterase (PDE) and with the helical
peptide C20W of the plasma membrane calcium pumps
[18]. Following the similarity between the calmodulin
and human centrin 2 (HsCen2) alpha-helix binding sites,
we recently suggested that terphenyl 2 might also inhibit
the interaction between HsCen2 and a 17 residues pep-
tide of Xeroderma Pigmentosum Group C (XPC) protein
Table 1 Protein – alpha-helical peptide complexes

Protein complex

Chicken calmodulin in complex with smooth muscle myosin light chain kina
(smMLCK)

Human calmodulin in complex with a mutant peptide of human DRP-1 kinas

Human calmodulin in complex with CAV1.1 IQ peptide

Human calmodulin in complex with CAV2.2 IQ peptide

E Coli calmodulin in complex with RS20 peptide of smMLCK

Rat calmodulin in complex with NMDA receptor NR1C1peptide

Human centrin 2 in complex with the centrin binding region of XPC protein

C-terminal domain of human centrin 2 in complex with a repeat sequence o
human Sfi 1

Scherffelia dubia centrin in complex with smMLCK peptide

Human BCL-XL in complex with BAK peptide

Human E3 ubiquitin-protein ligase MDM2 in complex with p53 tumor
transactivation domain (fragment 17-125)

Rabbit cardiac troponin C in complex with a fragment (residues 1-47) of card
troponin I

*known to be disrupted by terphenyl or its derivatives.
[27]. Terphenyl derivates mimicking the alpha-helical
structure of p53 N-terminal peptide inhibit the p53-
MDM2 [22] and the p53-HDM2 interactions [21]. These
molecules also mimic the alpha-helical region of Bak
BH3 domain, which binds BCL-X2, thus disrupting the
BCL-X2/Bak interaction [19,20,24].
In this work we performed a computational analysis in

order to evaluate several key physicochemical and surface
properties of proteins known to interact with alpha-
helical peptides or to bind terphenyl and its derivatives.
We calculated the binding pocket volumes and the fractal
dimensions of the surface cavities for the entire protein
and for the binding pockets. We identified several simila-
rities and specificities characterizing such protein binding
sites that can be helpful for future development of more
efficient small-molecule inhibitors targeting alpha-helix
binding proteins.

Methods
In this study we compared the sequence and surface prop-
erties of the investigated proteins. In order to analyze the
PDB code
Resolution

SwissProt
code

Interacting residues of the
bound alpha-helix

se 2O5G* P62149 TRP5, THR8, VAL12

1.08 Å

e 1ZUZ P62158 TRP305, PHE309, VAL312

1.91 Å

2VAY* P62158 THR526, ILE529, PHE533

1.94 Å

3DVE P62158 MET854, VAL857, MET161

2.35 Å

1QTX - TRP5, THR8, VAL12

1.65 Å

2HQW P62161 PHE880, THR884, LEU887

1.90 Å

2GGM P41208 TRP848, LEU851, LEU855

2.35 Å

f 2K2I P41208 LEU651, LEU655, TRP658

NMR

3KF9 Q06827 TRP4, PHE8, VAL11

2.60 Å

1BXL* Q07817 VAL574, LEU578, ILE581

NMR

1YCR* Q00987 PHE19, TRP23, LEU26

2.60 Å

iac 1A2X P02586 LEU17, MET21, ILE24

2.30 Å
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sequence similarities we performed sequence alignment
using the CLUSTALW software [28]. Interacting residues
at the protein-protein interface in terms of contact dis-
tances were found using the ContPro online freely avai-
lable tool [29]. We identified the protein residues
interacting with the three key residues of the alpha-helical
peptide (occupying positions i, i+3 and i+7 or i, i+4 and
i+7) those relative positions are mimicked by terphenyl
and its derivatives. The distance threshold was set to 5 Å
for the side chain atoms.
In order to evaluate the protein surface properties, the

bound peptide was removed for each complex. The surface
characteristics of the entire protein and those of the
peptide-binding cavity were analyzed. Using the ap-
proach of the fractal geometry we quantitatively de-
scribed the surface roughness for the entire protein and
Figure 1 Sequence alignment of alpha-helix binding proteins. The am
in red.
for the binding cavity, expressed by global surface frac-
tal dimension (DS) and local surface fractal dimension
(DL), respectively. In order to calculate the surface frac-
tal dimension we used the method proposed by Lewis
and Rees [30] based on the scaling law between the sur-
face area (SA) and the radius of the rolling probe mol-
ecule (R) on the surface, i.e. SA is proportional to the
radius to the power 2-Ds:

SAeR2−DS ð1Þ

The surface fractal dimension was determined from
the slope of the double logarithmical plot of SA versus
R. The surface area of the protein was computed using
the on-line available software GETAREA [31]. Probe
radii of 1, 1.2, 1.4, 1.6, 1.8 and 2 Å were used. For the
ino acid residues interacting with alpha-helical peptides are presented



Table 2 Sequence identity (in %) between the considered proteins (the binding area/entire protein)

Protein/ sequence identity Human
calmodulin

Human
centrin 2

Scherffelia dubia
centrin

Human
BCL-X2

Human E3 ubiquitin-protein ligase
MDM2

Human centrin 2 54/50

Scherffelia dubia centrin 56/55 90/74

Human BCL-X2 5/7 5/5 5/8

Human E3 ubiquitin-protein ligase
MDM2

5/4 5/10 7/6 9/5

Rabbit cardiac troponin C 57/51 57/34 37/32 5/9 5/19

The binding area was defined here as all residues of the protein interacting with the helical peptide.

Figure 2 3D structures of the complexes formed by: (a) human centrin 2 and a 10 residue peptide of Xeroderma Pigmentosum group C
protein, code entry 2GGM. (b) chicken calmodulin and smooth muscle myosin light chain kinase (smMLCK), code entry 2O5G. (c) scherffelia dubia
centrin and smMLCK peptide, code entry 3KF9. (d) rabbit cardiac troponin C and a fragment of cardiac troponin I, code entry 1A2X. (e) human
BCL-XL and BAK peptide, code entry 1BXL. (f) human E3 ubiquitin-protein ligase MDM2 and p53 tumor transactivation domain, code entry 1YCR.
All proteins are shown as surface in atom color type (C and H-white, N – blue, O -red, S – yellow) and ligands are shown in magenta cartoon
with hydrophobic interacting residues given as sticks.
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Figure 3 3D structures of alpha-helix binding domains. (a)
Superposition of the alpha-helix binding regions of chicken
calmodulin (red, code entry 2O5G), HsCen2 (blue, code entry 2GGM),
scherffelia dubbia centrin (green, code entry 3KF9) and rabbit
troponin C (yellow, code entry 1A2X). (b) Structure of human BCL-XL
binding domain (code entry 1BXL). (c) Structure of human E3
ubiquitin-protein ligase MDM2 (code entry 1YCR) binding domain.
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proteins cavities, the same algorithm was employed
using the CASTp software [32]. Hydrophobicity and
local hydrophobic density for binding pockets were de-
termined using Fpocket [33]. Pocket volumes were com-
puted using CASTp [32].
Molecular docking of terphenyl 2 was performed into

the alpha-helical binding sites of calmodulin (code entry
2O5G) and troponin C (code entry 1A2X) using AutoDock
4.2 [34]. The input files preparation and docking analysis
were carried out using AutoDockTools. Grid maps were
centered in the alpha-helix binding site for both structures.
Grids sizes were 126 Å x 126 Å x 126 Å with a grid spa-
cing of 0.33 Å for calmodulin and 126 Å x 126 Å x 126 Å
with a grid spacing of 0.28 Å for troponin C. Ligand con-
formational searching was performed using Lamarckian
genetic algorithm and all ligand torsion angles were flex-
ible. The following docking parameters were used: 250
Lamarckian genetic algorithm runs, a population size of
250, a maximum of 2 500 000 energy evaluations and a
maximum of 27000 generations.
Figures were prepared using PyMol [35] and CHIMERA

software [36].

Results and discussions
Sequence-based analysis
We analyze several proteins interacting with alpha-
helical peptides, some of them being known to bind also
terphenyl and/or its derivatives. To characterize and
compare their surface properties we examine the se-
quences and the three dimensional (3D) structures of
the complexes formed by the protein and the bound
peptide. The 3D structures are retrieved from the PDB
[37], the entry codes being presented in Table 1. Most of
the structures are crystallographic. Two NMR structures
are also used: the C-terminal domain of human centrin 2
in complex with the repeat sequence of human Sfi 1 and
the human BCL-XL in complex with the BAK peptide.
Multiple sequences alignment (Figure 1) shows low se-

quence identity for the most of the analyzed proteins
(shown in Table 2) both for the entire sequences and for
the binding areas. The binding areas included all residues
of the protein interacting with the alpha-helical peptide.
Chicken, human, E. coli and rat calmodulin have very
similar sequences (rat, chicken and human calmodulin are
100% identical; E coli has 98% identity with the others).
For BCL-XL and human ubiquitin carboxyl-terminal
hydrolase MDM2 only those fragments of sequences that
are present in the 3D structures are considered. There is a
high similarity only between the calmodulin, centrin 2 and
troponin C sequences.

Structure-based analysis
Figure 2 illustrates the complexes’ structures of six alpha-
helix binding proteins. In all shown complexes, bulky



Figure 4 Illustration of the interacting residues (in sticks) of the protein (atom color type) and the bound peptide (red): (a) chicken
calmodulin and smMLCK (code entry 2O5G), (b) human centrin 2 and the centrin binding region of XPC (code entry 2GGM), (c) human BCL-XL
protein and BAK (code entry 1BXL), (d) human E3 ubiquitin- protein ligase MDM2 and p53 tumor transactivation domain (code entry 1YCR), (e)
rabbit cardiac troponin C and cardiac troponin I (code entry 1A2X).
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hydrophobic residues of the bound peptide anchor into
the protein binding pocket. Following the sequence simi-
larities we superimposed the alpha-helix binding regions
structures of calmodulin, human centrin 2, scherffelia
dubia centrin and rabbit troponin C (Figure 3a). Strong
structural homology for binding regions is seen following
the sequence similarity of these proteins. Figure 3b and 3c
illustrate the binding pockets of BCL-XL and human E3
ubiquitin-protein ligase MDM2, respectively.
The interacting residues of the proteins and bound

peptides, identified with ContPro [29], are shown in
Figures 1 and 4 and Table 1. The results reveal that usually
hydrophobic residues such as TRP, LEU, ILE, PHE, VAL,
MET are involved in the interactions. The presence of hy-
drophobic residues suggests a favorable interaction with
terphenyl-like molecules anchoring in the hydrophobic
cavities. Most of the residues involved in the interactions
between the proteins and alpha-helices are hydrophobic
for both partners, as also observed in other studies [38].
We notice several key residues involved in the interaction
of the same protein with different peptide partners. For
example, in the case of calmodulin, PHE92, MET124,
PHE141, MET144 and MET145 are involved in most of
the peptides’ interactions. These residues can thus be



Figure 5 Surface lipophilicity (shown in green) of alpha-helix
binding proteins computed using MOE. (a) Human E3 ubiquitin-
protein ligase MDM2 (PDB code 1YCR), (b) Scherffelia dubia centrin
(PDB code 3KF9).
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considered as key for the interaction with terphenyl and
its derivatives, or other alpha-helix mimetics. We noticed
the presence of MET residues in most of the alpha-helix
binding pockets analyzed here. In a recent study, MET
residues have not been identified to be a part of hot spot
amino acids, in particular in alpha-helix mediated protein
interfaces [39]. However, our analysis clearly indicates
their presence in positions that are key for the inter-
action with the alpha-helical partner. Furthermore, Ma
and Nussinov [40] have also concluded that the amino
acids TRP, MET, and PHE are important for protein-
protein interactions. They showed that TRP/MET/
PHE residues play roles in the dimerization of the
transcriptase (p51/p66) and in cell-fusion processes,
including the gp120-CD4 interaction and the gp41
six-helix bundle formation. They suggested that pola-
rizability of MET allows it to assume roles of both
hydrophobic and hydrophilic residues [40]. Further, its
larger flexibility compared to other hydrophobic resi-
dues may facilitate the plasticity of hydrophobic bind-
ing pockets allowing to accommodate different ligands
[27].
We used Fpocket [33] and CASTp [32] to calculate

geometrical and physicochemical characteristics of the
binding pockets taking into account the protein residues
interacting with the alpha-helical peptides. The overall
hydrophobic character of the binding pockets is again
clearly identified. Yet, some specificity is also observed,
several pockets show high hydrophobicity score but low
local hydrophobic density, or vice versa, demonstrating
that the hydrophobic patches are not always regularly
distributed in the binding pockets. For example, 1YCR
and 3KF9 have similar hydrophobicity scores but high
and low calculated hydrophobic density, respectively.
The differences of the hydrophobicity distribution are
illustrated in Figure 5.
The volumes of the detected pockets in the peptide-

binding regions computed with CASTp are given in
Table 3. The average volume of the sub-cavities present at
the PPI interfaces found by Fuller et al [41] was ~60 Å3.
Sonavane & Chakrabarti [42] found PPI pocket volumes
to be up to ~330 Å3. We found similar volumes to those
reported in Bourgeas et al. [43]. Taking into account the
various algorithms and different concepts for binding
pocket definition, such differences for the computed vol-
umes can be expected. Several small cavities are present in
the binding region (seen in Figure 2 and Figure 5), as it
has been previously observed for other targeted PPI inter-
faces [39]. For the proteins studied here, the presence of
several small hydrophobic cavities in the alpha-helix bind-
ing region seems to be a typical surface feature guiding
the anchoring of hydrophobic residues from the peptide
side. Such characteristics can also facilitate targeting PPI
mediated by alpha-helices by small molecules containing
hydrophobic anchors (as terphenyl or other mimetics).
Further, we decided to explore the roughness of the

alpha-helix binding sites. The methodology implemented
to calculate the fractal surface dimensions, used for the
roughness evaluation, is illustrated in Figure 6 for the
global surface roughness of chicken calmodulin. The
fractal global surface dimension and the fractal local sur-
face dimension for the binding site of chicken calmodu-
lin are calculated to be DS=2.238; ± 0.006 and DL= 2.616 ±
0.072, respectively. The global and local fractal dimensions
for the other proteins are given in Table 4. Our results
and other previously published data [44-47] suggest
that the global fractal dimension of protein surface is



Table 3 Geometrical and physicochemical characteristics of the identified pockets

Protein code PDB Volume (Å3) Hydrophobicity score Local hydrophobic density

Chicken calmodulin 312.0 68.86 43.00

2O5G

Human calmodulin 203.0 68.86 42.00

1ZUZ

Human calmodulin 219.8 59.62 40.00

2VAY

Human calmodulin 226.4 61.00 39.32

3DVE

E.coli calmodulin 317.9 56.63 40.15

1QTX

Rat calmodulin 310.6 56.62 43.78

2HQW

Human centrin 2 147.9 41.47 32.00

2GGM

Human centrin 2 210.9 39.93 35.08

2K2I

Scherffelia dubia centrin 221.5 58.19 31.00

3KF9

Human BCL-XL 321.5 36.91 42.04

1BXL

Human E3 ubiquitin-protein ligase MDM2 201.9 51.18 55.20

1YCR

Rabbit cardiac troponin C 213.1 63.07 39.15

1A2X

Table 4 Global (DS) and local (DL) surface fractal
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about 2. The local surface fractal dimensions for the
binding cavities are computed to be larger than the
global surface fractal dimensions for all studied pro-
teins. This reflects the higher roughness of the binding
site and its more complex shape and that can be consid-
ered as important for ligand binding. The most important
differences between DS and DL are obtained for human
Figure 6 Double logarithmical plot of the surface area versus
probe radii for chicken calmodulin (PDB code 2O5G).
calmodulin (2VAY), centrin (3KF9, 2K2I), BCL-XL
(1BXL), MDM2 (1YCR) and troponin C (1A2X). It has
been experimentally demonstrated that human calmodu-
lin [18], BCL-XL [19,20] and MDM2 [21,22] interact
with terphenyl or its derivatives. Recently, we suggested
dimensions of investigated proteins

Code PDB DS DL

2O5G 2.238 ± 0.006 2.616 ± 0.072

1ZUZ 2.181 ± 0.007 2.487 ± 0.058

2VAY 2.183 ± 0.006 2.757 ± 0.108

3DVE 2.217 ± 0.003 2.418 ± 0.040

1QTX 2.302 ± 0.002 2.494 ± 0.069

2HQW 2.172 ± 0.002 2.454 ± 0.082

2GGM 2.247 ± 0.004 2.373 ± 0.018

2K2I 2.167 ± 0.008 2.892 ± 0.124

3KF9 2.179 ± 0.006 2.892 ± 0.153

1BXL 2.230 ± 0.007 2.696 ± 0.225

1YCR 2.173 ± 0.014 2.708 ± 0.055

1A2X 2.177 ± 0.005 2.624 ± 0.032



Figure 7 Best scored docking poses of terphenyl. The poses
after docking-scoring with AutoDock are shown in cyan. (a) chicken
calmodulin, code entry 2O5G, (b) rabbit cardiac troponin C, code
entry 1A2X.
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a possible binding of terphenyl 2, which mimics the rela-
tive positions of the side chains of residues TRP848,
LEU851, LEU855 of the XPC peptide, into human centrin
2 following our energetic and conformational flexibility
analysis performed for the alpha-helical peptide-binding
pocket of centrin 2 [27]. The DL value for the peptide-
binding site of troponin C shows rougher surface than the
entire protein, similarly to the above listed terphenyl-
binding proteins.
Taking into consideration the sequence and structural

homology of troponin C and calmodulin and other
physicochemical similarities of the binding sites as
discussed above, we decided to probe putative terphenyl
binding into troponin C. We performed docking of
terphenyl 2 into the peptide-binding sites of calmodulin
and troponin C using AutoDock. The best scored
docking poses are shown in Figure 7. The terphenyl ori-
entations in the best scored poses correspond to the
position of the bound alpha-helical peptides shown in
Figure 2. The predicted interaction energies of -7.98
and -8.18 kcal/mol for terphenyl binding in calmodulin
and troponin C, respectively, suggest favorable interac-
tions with the two proteins.
In the light of the results obtained here, it is now

interesting to discuss the physicochemical properties of
known PPI modulators, such as terphenyl. In a previous
work [10] we gathered a set of 66 PPI inhibitors among
which some terphenyl derivatives and other inhibitors
of alpha-helix mediated PPI were present. In that work
we demonstrated the more hydrophobic character of
these compounds but also their bigger size. Interes-
tingly, we also showed the importance of a critical num-
ber of aromatic bonds and some specific molecular
shapes (T-shaped, star-shaped, or L-shaped com-
pounds), among which some correspond to terphenyl
derivatives. The present work therefore confirms that
such genuine properties on the ligand side seem to be
cavity-driven, and that these small molecules must pos-
sess certain properties in order to efficiently modulate
an alpha-helix mediated PPI and to mimic the native
partner and its properties.

Conclusions
Modulating protein-protein interactions using small mole-
cules based on surface recognition has been a field of in-
creasing interest during the last decade. PPI interfaces are
very complex and need to be analyzed in order to be effi-
ciently targeted for drug discovery purposes. Designed
compounds must bind with high affinity and selectivity to
the target protein. The low sequence identity found be-
tween some of the analyzed proteins suggests that there
are no sequence requirements for the ability of proteins to
bind alpha-helical peptides and consequently small-
molecule mimetics.
From the structural point of view, all investigated

proteins show larger surface fractal dimensions for the
peptide-binding pockets than the entire protein sur-
face reflecting the higher complexity of the shape of
the binding sites. Also, the presence of several hydro-
phobic patches at the protein surface seems to be an
important property related to the ability of the protein
to bind alpha-helical peptides and mimetics. Further-
more, we showed that hydrophobicity is not uniformly
distributed across different alpha-helix binding pockets
and that its distribution can be used to identify hydro-
phobic hot spots.
Many similarities between the binding sites studied

here are observed and terphenyl or its derivatives bind-
ing to various alpha-helix binding proteins can be sug-
gested. However, targeting various PPI complexes by
similar small molecules can rise selectivity problems in
the context of drug discovery or chemical biology
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projects. Thus, the specificities found here for different
binding sites, e.g. key residues, roughness and local
hydrophobic density, can be further exploited to
optimize terphenyl-like ligands in order to improve
their selectivity.
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