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Abstract

Background: Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in
numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced
apoptosis in human hepatoma (HepG2) cells after 24 h exposure.

Methods: HepG2 cells were exposed to 5 and 10 uM Cd as CdCl, for 24 h while other sets of cells were
pre-treated with either 10 uM Cobalt protoporphyrin (CoPPIX) or 10 uM Tin protoporphyrin (SnPPIX) for 24 h, or
50 uM Z-DEVD-FMK for 1 h before exposure to 5 and 10 uM CdCl, for 24 h. Expressions of caspase 3, cytosolic
cytochrome ¢, mitochondrial Bax and anti-apoptotic BCL-xI proteins were assessed by western blot. Intracellular
reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H,DFA)
method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of
apoptosis in the cell populations.

Results: Our results show that there were a significant increase in the expression of cytosolic cytochrome c,
mitochondrial Bax protein, and caspase 3 at 5 and 10 uM compared to the control, but these increases were
attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3
activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 uM CdCl,,
respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl,. HepG2 cell
viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 uM CdCl,, respectively,
but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced
Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of
apoptotic and necrotic cells compared with Cd.

Conclusion: In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent
pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.
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Background

Cadmium (Cd) has been referred to as a group 1 car-
cinogen and a potential human carcinogen with an esti-
mated half-life of 15 to 20 years [1, 2]. This implies that
the metal escapes detoxification processes and therefore
makes it a more potent toxicant in the body. Cd is a
nonessential heavy metal found in the earth’s crust in as-
sociation with zinc ores. It is an environmental and in-
dustrial toxicant inducing multi-organ damaging effects.
It is not naturally abundant and does not degrade in the
environment causing a constant increasing risk of hu-
man exposure [3-5]. The toxicity of Cd has been well
established in several in vivo and in vitro studies [6—12].
Though the toxicity of this heavy metal is well estab-
lished, its mechanism of action is not fully elucidated.
Different studies have implicated the involvement of ei-
ther caspase-dependent and -independent or both path-
ways in Cd toxicity, depending on the study models,
period and dose of exposure [10, 13-16]. In addition,
studies have implicated the generation of reactive oxygen
species (ROS) as an important mechanism in Cd-
induced toxicity [17-19].

Heavy metals, including Cd, exert their toxicity by tar-
geting mitochondria [20]. Several studies have shown
that Cd exposure triggers the caspase-dependent path-
way causing elevated levels of cytosolic cytochrome c,
mitochondrial Bax protein and caspase 9 activation with
consequent activation of executioner caspase 3 [13-15,
21, 22]. Cd telluride quantum dots (CdTe-QDs) have
been shown to induce apoptosis, with elevated caspase 3
activity, decreased Bcl-2, increased cytosolic cytochrome
¢ and increased mitochondrial Bax protein level, in
HepG2 cells [23]. In the caspase-independent pathway,
Cd binds to the thiol groups of proteins in the mito-
chondrial membrane, thereby affecting mitochondrial
membrane permeability with a resultant increase in ROS
generation [24, 25]. The ROS can trigger mitochondrial
permeability transition resulting in apoptosis and necro-
sis. The majority of intracellular ROS produced is from
mitochondrial respiration and results from the disturb-
ance of the mitochondrial electron transport chain by
chemicals such as Cd. The disturbance to the mitochon-
drial membrane results in the leakage of electrons to the
molecular oxygen to produce ROS (such as superoxide
anion).

The generation of ROS and development of oxidative
stress have been implicated in apoptosis [26]. We have
previously shown that Cd triggered a significant increase
in ROS production in HepG2 cells [17] and studies have
shown the involvement of ROS in caspase activation and
apoptosis in different cell lines [26-29]. It is therefore
possible that Cd-induced ROS production in HepG2
cells may be responsible for a significant portion of the
apoptotic and necrotic effects in human hepatoma cells.
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In order to maintain the intracellular redox homeosta-
sis, cells are equipped with antioxidant defense mecha-
nisms that are induced in the presence of excess ROS.
One such mechanism is the antioxidant enzyme heme
oxygenase-1 (HO-1), an inducible form of heme oxygen-
ase, which catalyses the rate-limiting step catabolism of
heme to produce ferrous iron (Fe**), carbon monoxide
(CO) and biliverdin [30]. HO-1 has been reported to
exert anti-apoptotic, antioxidant, anti-inflammatory and
cytoprotective effects in different cell lines [30, 31]. We
and others have shown that Cd induced the expression
of HO-1 in human astrocytoma 1321 N1 cells [8], mam-
mary epithelial MCF-7 cells [32], and 2937 cells [33],
probably in response to oxidative stress induced by the
metal. Although it has been shown that HO-1 prevents
crotonaldehyde-stimulated apoptosis in HepG2 cells
[34], no study has yet shown whether HO-1 can protect
HepG2 cells against Cd-induced apoptosis. Also, it was
shown that under certain conditions HO-1 overexpres-
sion could have a deleterious effect on cells [35] and so
it is not yet clear what the role of HO-1 induction in Cd
toxicity is. Therefore, in this study, we evaluated the
anti-oxidative and anti-apoptotic effects of HO-1 overex-
pression in human hepatoma cells (HepG2) exposed to
the environmental toxic heavy metal, Cd for the purpose
of identifying a therapeutic target for dealing with Cd
toxicity.

Materials and methods

Chemicals and reagents

CdCl, was obtained from Sigma-Aldrich (Poole, Dorset,
UK). Antibodies against Tom40, GAPDH, cytochrome c,
Bax, BCL-xl, HO-1 and caspase 3 were obtained from
Santa Cruz Biotechnology (Middlesex, UK). Horseradish
peroxidase-conjugated goat anti-rabbit antibody was ob-
tained from Bio-Rad laboratory (Hempstead, UK). Poly-
acrylamide (30 %) was purchased from Seven Biotech
Ltd (Worcestershire, UK). Nitrocellulose membranes
were purchased from Amersham Biosciences (Amer-
sham, Bucks, UK). Caspase 3 and Calpain activity detec-
tion kits were obtained from Calbiochem (Nothingham,
UK) and Promega (Southampton, UK), respectively.
Annexin V-Cy3 Apoptosis detection Kit Plus (Cat #
K202-25) was obtained from BioVision (Mountain View,
CA, USA). Protoporphrin IX cobalt chloride (CoPPIX),
SnPPIX, Z-DEVD-FMLK, and all other chemicals were of
the highest grade available and were obtained from
Sigma-Aldrich (Poole, Dorset, UK).

Cell culture and treatments

HepG2 human liver hepatoma cells [36] were purchased
from the American Type Culture Collection (ATCC,
Rockville, MD, USA). The cells were grown in Dulbec-
co’s modified Eagle’s medium (DMEM) supplemented
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with 10 % fetal bovine serum (FBS), 1 % MEM nones-
sential amino acid solution, 1 % sodium pyruvate solu-
tion and 1 % penicillin-streptomycin solution. The cells
were allowed to grow at 35 °C in a humidified atmos-
phere of 5 % CO, and 95 % air. Prior to treatment, the
cells were replated in an appropriate cell culture plate
and allowed to attach for 24 h. Approximately 5 x 10°
cells/well (total volume of 2 ml/well) were plated for
treatments done in 6 well plates (1 well=9.6 cm?).
HepG2 cells were treated with either 5 or 10 uM cad-
mium as CdCl, (prepared in double distilled water and
sterile filtered) for 24 h at 37 °C. After incubation, the
cells were harvested for the various assays. For induction
and inhibition studies, HepG2 cells were pre-treated
with either 10 uM CoPPIX (prepared in 0.1 M NaOH
and pH adjusted to 7.4) or 10 pM SnPPIX for 24 h at
37 °C or 50 uM Z-DEVD-FMK (10 mM stock prepared
in DMSO and diluted to working solution in culture
medium) for 1 h at 37 °C, respectively. After the incuba-
tion period, cells were washed with PBS and then ex-
posed to 5 and 10 pM CdCl, for 24 h. The cells were
then harvested for the various assays.

Calpain activity

Calpain activity in whole cell extracts was determined
using the Calpain Activity Assay Kit from Calbiochem.
The cells were treated with 5 and 10 puM CdCl, for 24 h,
and the assay was performed as described in the kit
protocol. The assay is based on the release of 7-amino-
4-methylcoumarin (AMC) from a synthetic calpain sub-
strate, Suc-Leu-Leu-Val-Tyr-AMC, by calpain. The
fluorescence intensity of the cleavage product, AMC,
was measured at an excitation wavelength of 360 nm
and emission wavelength of 440 nm.

Caspase 3 activity

Caspase 3 activity in whole cell extracts was determined
spectrophotometrically using the CaspACE™ Assay Sys-
tem, Colorimetric kit (Product code G7220) from Pro-
mega (Madison, WI, USA). The method was based on
the cleavage of Ac-DEVD-pNA by caspase 3 (DEVDase)
to produce a yellow-colored p-nitroaniline (pNA). The
pNA produced was monitored spectrophotometrically at
405 nm, as it is a measure of caspase 3 activity. Cells
seeded in 6-well plates were treated with 5 and 10 pM
CdCl, for 24 h and replicate cells were treated at the
same time with an inhibitor of apoptosis, Z-VAD-FMK
(50 uM final concentration). In the HO-1 inhibition
study, cells were pre-treated with 10 pM SnPPIX for
24 hr before exposure to 5 and 10 uM CdCl, for 24 hr
and untreated cells were exposed to medium containing
0.1 % 0.1 M NaOH. After the incubation period, the
cells were harvested and caspase 3 activities were deter-
mined as described in the kit protocol.
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Intracellular ROS measurement

ROS level was determined by using dihydrofluorescein
diacetate (H,FDA) method as previously described [37]
with little modifications using 50 uM H,FDA instead of
20 pM as used in the original method. Cells were incu-
bated with 50 uM H,FDA for 30 min and washed with
PBS before exposure to 5 and 10 pM CdCl, for 1 h. In
the pre-treated experiments, HepG2 cells were incu-
bated with either 10 pM CoPPIX or 10 uM SnPPIX or
medium containing 0.1 % 0.1 M NaOH for 24 h, washed
with PBS and then treated with 50 uM H,FDA for
30 min before 1 h exposure to 5 and 10 pM CdCl,.
Fluorescence intensity was measured with a fluorescence
microplate reader (FL6000) at excitation of 488 nm and
emission of 512 nm.

Mitochondrial and Cytosolic fractions preparation

HepG2 cells were plated in EasyFlask 75 cm? Vent/Close
tissue culture flasks (Fisher Scientific,c, UK) and were
allowed to grow to 90 % confluency. The cells were then
treated with 5 and 10 uM CdCl, for 24 h. In the induc-
tion and inhibition studies, the cells were pre-treated as
described above prior to CdCl, exposure. The mitochon-
drial and cytosolic fractions were prepared as described
by Cook et al. [38]. Cell homogenates were prepared in
homogenizing buffer as described by Lawal and Ellis [8].
Briefly, after the incubation, the cells were washed with
ice-cold PBS and harvested by scrapping with a rubber
policeman in PBS. The harvested cells were then centri-
fuged at 1000 x g for 3 min at 4 °C and the cell pellets
were resuspended in cold homogenizing buffer (20 mM
HEPES-KOH, pH 7.5; 10 mM Sucrose; 10 mM KCl;
1.5 mM MgCly; 1 mM EDTA; 1 mM EGTA; 1 mM
DTT; 1 mM PMSF; 2 mg/ml Aprotinin; 10 mg/ml Leu-
petin; 5 mg/ml Pepstatin). Mitochondrial fractions were
prepared by centrifugation of the homogenate at 23,100
x g for 30 min at 4 °C. The pellet containing the mito-
chondrial fractions was resuspended in lysis buffer
(50 mM Tris—HCl, pH 7.4; 150 mM NaCly; 0.5 % (v/v)
Triton-X-100; 20 mM EGTA; 1 mM DTT; 1 mM So-
dium Orthovanadate) and stored at —70 °C. The super-
natant was further centrifuged at 100,000 x g for 1 hour
at 4 °C and the supernatant was retained as cytosolic
fractions.

Western blot analysis

The mitochondrial, cytosolic and whole cell fractions
were used for western blot analysis after CdCl, exposure.
Approximately 20 pg of total protein was separated by
10 % polyacrylamide gel electrophoresis (SDS-PAGE)
[39] and then transferred to nitrocellulose membrane
(Hybond, ECL). BCL-xl, HO-1, Caspase 3, Bax, and
Cytochrome c protein expressions were detected using
anti-BCL-xl, anti-HO-1, anti-Caspase 3, anti-Bax, and
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anti-Cytochrome c¢ antibodies (1:2000) and a secondary
antibody (goat anti-rabbit IG-horseradish peroxidase
conjugate) according to the manufacturer’s protocol.
Tom40 and GAPDH proteins were detected by Tom40
and GAPDH antibodies (1:2000), respectively, with a
goat anti-rabbit antibody. Tom40 and GAPDH were
used for the normalization of mitochondria and cytosolic
protein loading, respectively, and blots were developed
with the ECL luminal chemiluminescence solutions (Cat
# RPN 2232) according to the manufacturer’s protocol
(GE Healthcare, Buckinghamshire, UK). Protein expres-
sions were detected with an Image reader LAS 3000 and
quantitated using Image] Software (http://rsb.info.nih.
gov/ij/).

Cell viability assay

The MTT assay method [40] was used to assess cell via-
bility. HepG2 cells were treated in a 96-well plate with 5
and 10 uM CdCl, for 24 h at a concentration of 10°
cells/ml in a total volume of 100 pl/well. At the end of
the incubation period, 20 pl of MTT (1.2 mg/ml) was
added and the cells were allowed to incubate for 4 hours.
After the incubation period, the media were discarded
and 100 pl of DMSO was added, followed by gently
shaking for 10 min to obtain a complete dissolution. Ab-
sorbance was read at 560 nm using the Labsystems
iEMS microplate spectrophotometer (Vienna, USA). For
the caspase 3 inhibition study, HepG2 cells were pre-
treated for 1 h with 50 pM Z-DEVD-FMK prepared in
cell culture medium (from the 10 mM Z-DEVD-FMK
stock prepared in DMSO) prior to CdCl, exposure. After
the incubation, the medium was discarded and the cells
were washed with PBS before incubating with 5 and
10 uM CdCl, for 24 h. For the HO-1 induction and inhib-
ition studies, HepG2 cells were pre-treated with either
10 uM CoPPIX or 10 uM SnPPIX for 24 h prior to CdCl,
exposure. After the 24 h incubation, the medium was dis-
carded and the cells were washed with PBS before incu-
bating with 5 and 10 pM CdCl, for 24 h. Cell viability was
determined by MTT assay as described above.

Apoptosis and necrosis studies

The studies of apoptotic and necrotic cell deaths were
carried out using Annexin V-Cy3 Apoptosis Detection
Kit Plus from BioVision (Mountain View, CA, USA).
Briefly, HepG2 cells were treated with 5 and 10 pM
CdCl, for 24 h. In the induction and inhibition studies,
the cells were pre-treated with either 50 uM Z-DEV-
EMK for 1 h or 10 uM CoPPIX for 24 h prior to CdCl,
exposure. After the incubations, the cells were detached
using a low trypsin concentration (0.1 %) for one mi-
nute. The media containing the cells were centrifuged
for 5 min at 1000 x g. The cell pellets were then resus-
pended in 500 pl binding buffer and 5 pl of annexing-
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V-Cy3 dye and 1 pl of SYTOX Green dye was added to
the resuspended cells and mixed thoroughly. The popula-
tions of live, apoptotic and necrotic cells were measured
using flow cytometry (EPICS XL Coulter; Beck- man,
Indianapolis, IN, USA) according to the manufacturer
protocol.

Statistical analysis

Results were analyzed using one way analysis of variance
(ANOVA) with Dunnett’s multiple-comparison post-test
for comparisons between groups. Statistical analyses
were carried out using the Graphpad5 Prism Software.
Data were expressed as mean + SD of three different ex-
periments done in triplicate. Differences were considered
statistically significant at p < 0.05.

Results

Cd increased calpain and caspase 3 activities, but
decreased BCL-x| expression

Different studies using different models have shown the
involvement of caspase 3 in Cd-induced apoptosis [13,
15, 22]. In the present study, we investigated whether Cd
can activate the caspase 3-dependent pathway under our
experimental conditions using HepG2 cells exposed to 5
and 10 uM CdCl, for 24 h. The data showed that Cd
caused significant increases in caspase 3 activity in
HepG2 cells (Fig.1A), being 41.3- and 29.8-fold at 5 and
10 pM CdCl,, respectively. Our results also showed that
the presence of SnPPIX significantly enhanced the in-
crease in caspase 3 activity induced by 5 and 10 pM
CdCl,. Also, several studies have indicated that calpain
can activate caspase 3 directly, thereby providing a link
between calpain and caspase 3-dependent apoptosis.
Therefore, to examine whether calpain activation is in-
volved in Cd-induced cell death in HepG2 cells, we eval-
uated calpain activity in the cells after CdCl, exposure.
The results showed a nonsignificant increase in calpain
activity in HepG2 cells exposed to 5 pM CdCl, and a
significant 4-fold increase at 10 uM CdCl, (Fig.1B). To
further confirm the involvement of the caspase 3-
dependent apoptotic pathway in HepG2 cells after Cd
exposure, we examined the expression levels of mito-
chondrial BCL-xl, an anti-apoptotic protein, after Cd ex-
posure. The results showed a 7.3 and 7.7- fold decrease
in BCL-xI expressions at 5 and 10 pM CdCl,, respect-
ively when compared to the control (Fig. 1C). These re-
sults showed that the caspase 3-dependent pathway may
be involved in Cd-induced apoptosis in HepG2 cells and
calpain activation may be involved in Cd-induced cell
death at higher concentrations.

Cd upregulated expression of heme oxygenase-1
In order to examine the response of the HepG2 antioxi-
dant system to Cd-induced insults, we evaluated the


http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

Lawal et al. BMC Pharmacology and Toxicology (2015) 16:41

Page 5 of 13

6000+

4000+

(% control)

2000+

Caspase activity
(pmol/pNA liberated/hourfuig protein)

.
# -
#
5 10

3 -sn10um
B + Sn10uM

between SnPPIX pre-treated and non pre-treated cells

0 0
CdCl, (uM)
C
UM Cdcl,
0 5 10
BCL-x| e g 0 = v
Tom40 S

Fig. 1 Effects of Cd on pro- and anti- apoptotic proteins in HepG2 cells. HepG2 cells were exposed to 5 and 10 uM CdCl, for 24 h and both
whole cell extracts and mitochondrial fraction were prepared from the harvested cells as described in Materials and methods. (A) Caspase 3
activity in the presence and absence of 10 uM SnPPIX and (B) Calpain activities was determined in the whole cell extracts. Values represent mean
+ SD for 3 separate experiments (n = 3). (C) The expression of mitochondrial BCL-xI protein was analyzed by western blot using antibodies to
BCL-xI or Tom40 as internal control for protein loading. Quantification of protein expressions was done with image j. Data represent the mean +
SD of three different experiments (n = 3). p < 00001 as significant differences between Cd-treated and control. **p < 0.0001 as Significant differences

25+

#
T 20
§
> 2
=z a
% Ens-
T 2
10+
g8
O
<
=
= 57
: 0 5 10
CdCl, (uM)
1.5
c
k=]
w
w |
g = 1.0
=
o [=]
£0
T =
5 ©
a2z
= 2 0.5
|
0 # #
m o
0.0 : :
0 5 10
CdCl, (uM)

expression of the cytoprotective heme oxygenase-1 (HO-
1) enzyme, an inducible isoform of heme oxygenases,
after Cd exposure (Fig. 2A). The data showed 25 and 31-
fold increases in HO-1 expression after treatment with 5
and 10 pM CdCl,, respectively for 24 h (Fig. 2A). This
suggested the involvement of free radical generation in
the cytotoxicity of Cd.

In order to confirm that CoPPIX, a well known
pharmacological inducer of HO-1, has an inducible ef-
fect on HO-1 in our study model, we examined the HO-
1 expression in HepG2 cells pre-treated with 10 uM
CoPPIX for 24 h prior to Cd exposure (Fig. 2B). The
data showed that the presence of CoPPIX alone trig-
gered a 10-fold induction of the HO-1 expression from
its basal level (Fig. 2B). The presence of CoPPIX also

caused significant increases of 27.29 and 11.34 %, in
HO-1 expression at 5 and 10 uM CdCl,, respectively.
The increases in HO-1 expression in the presence of ei-
ther CoPPIX alone or 5 pM or 10 uM CdCl, is not addi-
tive when compared to the CoPPIX pre-treated cells
(Fig. 2B). These data showed that the presence of CoP-
PIX has an inducible effect on HO-1 expression and that
CoPPIX acts non-additively with Cd triggering an in-
creased HO-1 expression in the HepG2 cells.

Heme oxygenase-1 attenuated ROS production

In order to define the role of HO-1 in modulating Cd-
induced oxidative stress, we exposed HepG2 cells to ei-
ther 10 uM CoPPIX or 10 pM SnPPIX before treatment
with CdCl, and then assessed the levels of ROS
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production. Our data showed that Cd caused a 60.00
and 116.67 % increase in ROS production at 5 and
10 pM CdCl,, respectively (Fig. 3). However, the pres-
ence of CoPPIX significantly reduced ROS production
by 24.60 and 22.20 % at 5 and 10 pM CdCl,, respectively,
while SnPPIX caused significant 18.34 and a 13.86 % in-
crease in ROS production at 5 and 10 uM CdCl,, respect-
ively (Fig. 3). This data showed that HO-1 attenuates the
Cd-induced oxidative stress in HepG2 cells.

Heme oxygenase-1 attenuated the pro-apoptotic effects

Heme oxygenase-1 has been shown in several studies to
protect against oxidative stress and oxidative damage in
different cell lines [41—44]. Increased ROS and other free
radicals have been implicated in apoptosis and necrosis
[26, 27, 45]. In order to define the role of HO-1 in Cd-
induced apoptosis and necrosis in HepG2 cells, we
induced HO-1 expression using a well known HO-1 in-
ducer, CoPPIX. HepG2 cells were pre-treated with
10 puM CoPPIX for 24 h before treatment with 5 and
10 uM CdCl, for 24 h and the protein expression of

caspase 3, mitochondrial Bax, and cytosolic cytochrome
¢ were examined by western blot (Fig. 4). The results
showed that Cd caused significant increases in the ex-
pression of caspase 3 (11 and 9- fold), mitochondrial
Bax (23 and 19- fold) and cytochrome ¢ (7 and 6-fold)
in HepG2 cells after exposure to 5 and 10 uM CdCl,, re-
spectively (Fig. 4). The presence of HO-1-induction,
however attenuated the Cd-induced expression of these
pro-apoptotic markers. HO-1 caused a 5 and 3- fold re-
duction in caspase 3 expression (Fig. 4A); a 4.5 and 2.6-
fold reduction in mitochondrial Bax expression (Fig. 4B)
and a 5-fold decrease in cytosolic cytochrome c expres-
sion at 5 pM CdCl,, respectively (Fig. 4C). This data
suggest the cytoprotective effect of HO-1 in attenuating
Cd-induced caspase 3-dependent pathway of apoptosis.

Heme oxygenase-1 attenuated Cd-induced cytotoxicity

In order to evaluate whether HO-1 induction would at-
tenuate Cd-induced cytotoxicity and to further demon-
strate the involvement of caspase 3 in Cd cytotoxicity in
HepG2 cells, the cells were pre-treated with either
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10 uM CoPPIX (HO-1 inducer) or 10 pM SnPPIX (HO-
1 inhibitor) for 24 h or 50 uM Z-DEVD-FMK (caspase 3
inhibitor) for 1 h, whereafter the cells were further ex-
posed to 5 and 10 pM CdCl, for 24 hours. Cell viability
was determined using the MTT assay. The results
showed that Cd significantly decreased cell survival at 5
(p<0.05) and 10 (p <0.001) uM. Cd caused a 13.89 and
32.53 % decrease in cell survival at 5 and 10 pM, re-
spectively (Fig. 5A). The presence of Z-DEVD-FMK
attenuated the cytotoxic effects of Cd with a significant
(p<0.01) increase in cell survival at 5 uM CdCl, when
compared with CdCl,-only treated HepG2 cells. Simi-
larly, CoPPIX pre-treated cells showed significantly in-
creased in cell survival by 11.61 and 26.97 % at 5 and
10 pM CdCl,, respectively when compared to cells ex-
posed to Cd only (Fig. 5A). HO-1 induction also caused a
15.67 % increase in cell survival at the basal level. In
addition, the presence of CoPPIX caused a significant in-
crease both in the basal level (10.33 %) and at 10 pM
CdCl, (15.67 %) when compared to the presence of Z-
DEVD-FMK (Fig. 5A). However, the increased cell viabil-
ity caused by CoPPIX at 5 uM was not significant when
compared to Z-DEVD-FMK. This suggested that caspase
3 activation via ROS production may be the predominant
pathway responsible for Cd-induced cell death at 5 uM
CdCl, since both CoPPIX and Z-DEVD-FMK produced
similar effects at this concentration. However, the pres-
ence of SnPPIX caused a decrease in cell survival com-
pared to cells exposed to Cd only. These results suggest
that HO-1 induction and/or casapse 3 inhibition may be
important in attenuating Cd-induced cytotoxicity.

Heme oxygenase-1 attenuated Cd-induced apoptosis and
necrotic cell death

To further demonstrate the cytoprotective effect of HO-
1 in the Cd-induced caspase 3-dependent apoptotic
pathway in HepG2 cells, the cells were pre-treated with
either 10 uM CoPPIX for 24 h or 50 pM Z-DEVD-FMK
for 1 h before exposure to 5 and 10 pM CdCl, for 24 h.
After treatments, cells were harvested, stained with
annexin v-cy 3 and SYTOX dyes and examined using
flow cytometry, while cell population distribution was
quantified also using flow cytometry (Fig. 5B & C). The
results showed that 5 uM CdCl, caused a 39.34 % and
1.65 % apoptotic and necrotic cell death, respectively,
while 45.91 % and 2.13 % of cells exposed to 10 uM were
apoptotic and necrotic cells, respectively (Fig. 5B & C).
Both 5 and 10 pM CdCl, caused significant reductions
in the population of the live cells (Fig. 5B & C). The
presence of CoPPIX significantly increased the popula-
tion of the live cells by 19.70 % and 16.90 % at 5 and
10 pM CdCl,, respectively. Z-DEVD-FMK also caused
significant increases of 13.90 % and 11.80 % at 5 and
10 uM CdCl,, respectively. In contrast, COPPIX and Z-
DEVD-EMK both significantly reduced the number of
early apoptotic cells at 5 and 10 pM CdCl, (Fig.5B & C).
However, the population of late apoptotic cells in CoP-
PIX pre-treated cells was significantly lower than that of
Z-DEVD-FMK at both 5 and 10 uM CdCl,. Similarly,
COPPIX pre-treatment significantly reduced the popula-
tion of necrotic cells by 1.59 % and 0.50 % at 5 and
10 uM CdCl,, respectively. On the other hand, Z-
DEVD-FMK did not cause a significant reduction in the
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Fig. 4 Induction of HO-1 attenuates the pro-apoptotic effects of Cd. HepG2 cells were either exposed to 5 and 10 uM CdCl, for 24 h or pre-treated
with 10 uM CoPPIX for 24 h before treated with 5 and 10 uM CdCl, for 24 as described in the Materials and methods. (A) Whole cell extracts caspase 3
protein (B) Mitochondrial Bax protein and (C) Cytosolic cytochrome ¢ protein expressions were analyzed by western blot. Values are mean + SD of
three different experiments done in triplicate (n = 3). p < 0.0001 as significant differences between Cd-treated and control. ***p < 00001, **p < 0001
as significant differences between CoPPIX pre-treated and non pre-treated cells
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necrotic cell population at both of these concentrations.
The population of the necrotic cells in COPPIX pre-
treated HepG2 cells was significantly lower than that in
Z-DEVD-FMK pre-treated cells exposed to 5 pM CdCl,.

Discussion

Our data indicate that Cd upregulated HO-1 expression,
which modulated the antioxidant and anti-apoptotic
effects, thus limiting the cytotoxic, prooxidative and
pro-apoptotic effects of Cd, especially when HO-1 was
induced prior to Cd exposure.

We hypothesize that HO-1 upregulation, prior to Cd
exposure, can serve as a protective mechanism against
Cd-induced oxidative stress and cytotoxicity. Our data
indicated that the induction of HO-1 significantly in-
creased cell survival most probably as a result of de-
creased oxidative stress. The data also indicated that the
cell death induced by Cd involved the mitochondrial-
caspase 3 dependent apoptosis pathway, which may or
may not involve calpain activation. In addition, this
study showed that Cd induced largely apoptotic cell
death at the lower dose of 5 pM and both apoptotic and
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Fig. 5 Effects of HO-1 and caspase 3 on Cd-induced apoptosis and necrosis in HepG2 cells. HepG2 cells were either exposed to 5 and 10 pM
Cddl, for 24 h, or 50 uM Z-DEVD-FMK for 1 h before exposure to 5 and 10 uM CdCl, for 24 h, or either 10 uM CoPPIX or 10 uM SnPPIX for 24 h
before exposure to 5 and 10 uM CdCl; for 24 h. (A) Cell viability was determined by MTT assay. Data represent the mean + SD of three different
experiments done in triplicate (n = 3). HepG2 cells were harvested and stained with annexin V-Cy3 and SYTOX dyes. (B) The stained cells were
examined under the flow cytometry using annexin-V/PE-A and the SYTOX/FITC channels. (C) Histogram representative of the population of cells
(10,000 events) distribution in QT1, early apoptosis; Q2, late apoptosis; Q3, live; Q4, necrosis. *p < 0.05, **p < 0.001, ***p < 0.0001 as significant
differences between Cd-treated and control. “p < 0.0001 as a significant difference between pre-treated cells and cells exposed to Cd alone.

“p <001 as significant differences between a Z-DEVD-FMK pre-treated and CoPPIX pre-treated cells

necrotic cell death at the higher dose of 10 pM in con-
firmation with our earlier study done in HEK 293 cells
exposed to the same doses of Cd [10].

The present study also confirms earlier reports that
have implicated Cd in the induction of apoptosis and
necrotic cell death in HepG2 cells [23, 46, 47]. The use
of Z-DEVD-FMK as an effective inhibitor of caspase 3 in
HepG2 cells has already been well reported in different
studies [48, 49]. In this present study, Z-DEVD-FMK
prevented Cd-induced cell death at both 5 and 10 pM
CdCl,, indicating the involvement of caspase 3 in cell
death at both of these concentrations. The activation of
caspase 3 may be due to the direct effect of cadmium
ion (Cd**) on Bax protein with the latter inducing mito-
chondrial membrane permeability transition with the

consequent release of cytochrome c into the cytosol
(Fig. 6). These present findings correlate with the earlier
work done by Oh and Lim [46]. They found that Cd-
induced apoptosis in HepG2 cells in a time- and dose-
dependent manner and this induction correlated with
mitochondrial Bax cleavage and cytosolic cytochrome c
release. BCL-xl, an anti-apoptotic protein, prevents the
efflux of cytochrome c from the mitochondria into the
cytosol thereby inhibiting apoptosis [50]. Our study
revealed that Cd significantly depletes the level of mito-
chondrial BCL-xl protein and that Cd caused a corre-
lated increase in both caspase 3 activity and expression
in HepG2 cells at 5 and 10 pM, which may partly be due
to an increased in ROS and calpain activity. However,
the lower activity and expression seen at 10 uM CdCl,

~—————> 4 Calpain

Cytosol

Mitochondrion

Cyt.c

N A

I 'T‘ Caspase 3
k

Fig. 6 Proposed mechanisms for HO-1 intervention in Cd-induced apoptosis and necrosis in HepG2 cells. CdCl, dissociates in the cells to produce
Cd ion (Cd**) (a), which can induce mitochondrial permeability transition pore by modifying the thiol groups of the membrane proteins (b),
resulting in the leakage of electrons to generate ROS (c). ROS can activate Bax (d) and resulting in its migration into the mitochondrial membrane
(e) with the consequent release of cytochrome c into the cytosol (f). The cytochrome ¢ caused the activation of caspase 3 to initiate apoptosis
(g). ROS generated could also activate calpain (h) which can further activate caspase 3 (). Cd** can also directly activate calpain by mimicking Ca?
*jon (j). The activation of caspase 3 and calpain can result in apoptosis (k) and necrosis () respectively. HO-1 can attenuate ROS produced either
by direct effects of Cd®* on cellular molecules (m) or by indirect effects of Cd®* on mitochondrial membrane permeability (), resulting in calpain
inhibition and blockage of Bax mobilization to the mitochondrial membrane
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may be due to the inhibitory effects of Cd at this con-
centration. Cd has been shown in a previous study to in-
hibit caspase 3 activity with an IC50 of 9 uM [51]. The
lower caspase 3 activity observed at 10 uM may be due
to the displacement of Zn from its caspase 3 binding
sites. In addition, Cd may interfere (in a concentration
dependent manner) with the activation or function of
upstream caspases, such as caspase -8 or -9, leading to
the reduction in the expression and amount of active
caspase 3.

HO-1 is a cytoprotective enzyme and its expression is
under the control of the Nrf2 transcription factor. The
presence of oxidative stress triggers the release of Nrf2
from its keapl repressor in the cytosol and its conse-
quent migration into the nucleus where it heterodi-
merises with small Maf proteins [52] to stimulate the
transcription of downstream genes, such as HO-1,
through its binding to the antioxidant response element
(ARE) at the promoter end of the responsive gene [53].
It has already been reported that HO-1 prevented
crontonaldehyde-induced apoptosis in HepG2 cells [34].
The use of CoPPIX, a known inducer of HO-1 [42, 54],
in this study, caused significantly decreased levels of
mitochondrial Bax, cytosolic cytochrome c and caspase
3 protein expression, implicating HO-1 upregulation in
the modulation of Cd-induced apoptosis. However, HO-
1 induction did not cause a significant reduction in cyto-
chrome c expression at 10 pM CdCl, (Figure 4C). HO-1
is not a scavenger of Cd** but acts through its bypro-
ducts to scavenge ROS. It is therefore possible that Cd**
may contribute significantly to the release of cytochrome
¢ through its direct effect on mitochondrial membrane
permeability transition pore, especially at higher doses
(10 pM CdCl,), such that modulation by HO-1 induc-
tion may not have significant effects on the cytosolic
cytochrome c level at this dose of CdCl,. Indeed, the
modulation of HO-1 expression significantly increased
cell survival and also caused a significant reduction in
the population of apoptotic and necrotic cells after
CdCl, exposure.

Oxidative stress, defined as an imbalance between the
level of ROS and the antioxidant defence system with
the former being favoured, if not managed, can lead to
oxidative damage with its associated consequences of
damage to important cellular macromolecules like DNA,
proteins and lipids. HO-1 has been shown to protect
HepG2 from H,O,-induced oxidative stress [41]. The
data from the present study also highlight the involve-
ment of oxidative stress in mediating Cd-induced apop-
tosis and necrosis in HepG2 cells as seen in the high
level of ROS produced after Cd exposure. The upregula-
tion of HO-1, however, attenuated ROS production with
a corresponding reduction in the levels of Bax, cyto-
chrome c and caspase 3 levels.
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Calpain belongs to the family of Ca®*-dependent cyst-
eine proteases [55]. The involvement of calpain in apop-
tosis and its activation by Ca** is well established [55].
Calpain can activate caspase 3 thereby providing a link
with the mitochondrial caspase 3 dependent pathways in
apoptosis [16, 56]. Cd**, with the same ionic radii as Ca®
*, mimics Ca®" in the cells and thus can activate calpain
(Fig. 6). Indeed, it has been shown that Cd activates cal-
pain in the kidney proximal tubule cells [14], and in hu-
man embryonic kidney (HEK 293) cells [10]. In the
present study, we have shown that Cd caused significant
activation of calpain at 10 uM. We have previously
shown that Cd caused a significant increase in calpain
activity in HEK 293 cells at 10 pM [10]. The increased
calpain activity may be due to the direct effects of Cd**
on calpain (Fig. 6) or may be mediated by increased
intracellular Ca®* [10] or by increased ROS production
[57]. The significant elevation in caspase 3 activities at
5 uM without a significant increase in calpain activity
showed that calpain activation may not be required for
casapse 3 activation at this dose. However, both calpain
and caspase 3 were significantly activated at 10 pM, indi-
cating the involvement of calpain in caspase 3 activa-
tions and this may account for the high necrotic cell
population at this dose. HO-1 upregulation, however, at-
tenuated but did not completely eliminate the popula-
tion of necrotic cells, probably by reducing the ROS
generation induced by Cd.

Conclusion

The present study demonstrates that HO-1 protected
against Cd-induced caspase 3 apoptosis by attenuating
oxidative stress and therefore could serve as a potential
therapeutic target to prevent the hepatotoxic effects of Cd.
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