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Abstract

Background: The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs)
induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-
development studies because most of them focus on single-drug therapies. ADR reporting systems collect information
on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the
effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides
prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects.

Method: We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We
constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the
public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on
drug pair-protein interaction profiles.

Results: We used extensive clinical database information to construct categorical prediction models for drug pairs that
are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a
moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation
analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that
captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made
predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein
interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org. We used the
predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the
potential to induce ADRs via DDIs. This allowed us to identify potential DDI-induced ADRs not yet clinically reported.
The ability of the models to quantify adverse effects between drug classes also suggests that we may be able to select
drug combinations that minimize the risk of ADRs.

Conclusion: Almost all information on DDI-induced ADRs is generated after drug approval. This situation poses
significant health risks for vulnerable patient populations with comorbidities. To help mitigate the risks, we developed a
robust probabilistic approach to prospectively predict DDI-induced ADRs. Based on this approach, we developed
prediction models for 1,096 ADRs and used them to predict the propensity of all pairwise combinations of nearly 800
drugs to be associated with these ADRs via DDIs. We made the predictions publicly available via internet access.
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Background
Adverse drug reactions (ADRs) caused by individual drugs
and drug combinations constitute one of the top 10 causes
of death in the United States [1]. To alleviate this problem,
ADRs caused by a single candidate drug are closely moni-
tored and investigated during the drug development and
approval process [2]. For instance, drug candidates are
routinely tested in many in vitro and in vivo assays to pre-
dict their toxicity to humans [3]. Similarly, subsequent
clinical trials usually focus on a single drug and its thera-
peutic effect against a particular disease or condition.
Phase I clinical trials investigate the safety profile of a can-
didate drug on a small group of volunteers. Phase II trials
evaluate its safety and efficacy in a larger group of volun-
teers. Finally, in Phase III clinical trials, these effects and
ADRs are monitored in a large group of selected volun-
teers. Drugs that successfully pass these hurdles can then
be approved for general clinical use.
In real-life settings, however, many patients, especially

the elderly, are on multiple prescriptions and over-the-
counter medications for treating different and usually
unrelated conditions. ADRs due to interactions of co-
administered drugs constitute more than 20% of all re-
ported ADRs [4] and are clinically relevant in up to 80%
of elderly cancer patients [5]. These effects are rarely
discovered or systematically investigated during drug de-
velopment because of the extensive scope of the prob-
lem. In fact, although most ADRs induced by individual
drugs have been discovered and carefully monitored in
clinical trials before drug approval, information on
nearly all ADRs induced by drug-drug interactions
(DDIs) has been generated after drug approval [6]. This
poses continuous and serious risks to patients’ health.
Co-administration of two drugs can have multiple out-

comes concerning adverse drug effects. The adverse ef-
fects associated with either drug could be enhanced, or a
new unanticipated effect not previously associated with
either drug could arise. They represent synergistic DDIs.
Alternatively, a positive outcome may occur when a drug
counteracts the adverse effect of the other, although this
is not captured in ADR reporting systems.
Several methods to computationally predict DDIs have

recently been published. Vilar et al. developed a method
based on the structural similarity of drug molecules [7].
They hypothesized that if drug A interacts with drug B,
and drug C is structurally similar to drug A, then drug C is
also likely to interact with drug B. Gottlieb et al. developed
a more elaborate similarity-based approach for inferring
DDIs [8]. In addition to the structural similarity between
drugs, they defined several other similarities, including
drug–target similarity, drug–side effect similarity, drug–
target protein sequence similarity, as well as semantic
similarity measures based on either gene ontology or the
Anatomical Therapeutic Chemical (ATC) classification.

They combined the similarity measures to generate 49 fea-
tures for each drug pair, and then used the features to train
a logistic regression classification model for predicting
DDIs. Huang et al. published an algorithm for predicting
pharmacodynamic DDIs based on the closeness of drug tar-
gets in a human protein-protein interaction network [9].
Their hypothesis is that drug pairs with a minimum dis-
tance of 0 in a protein-protein interaction network are
those sharing at least one overlapping target and, therefore,
have a high probability of DDIs. Recently, Cami et al. con-
structed a DDI network for predicting unknown DDIs [10].
They collected DDI information from Multum VantageRx™,
a drug safety database, and constructed a DDI network by
representing each drug as a node and each DDI as an edge
connecting two drugs. They then defined covariates of
DDIs from the DDI network architecture, ATC taxonomy,
and molecular substructures of drugs, and performed
logistic regression analyses by using these covariates
as variables to predict novel DDIs. More recently, Luo et
al. published a method for predicting DDIs based on
docking simulations of drugs into well-defined binding
sites of 611 human proteins [11]. After we submitted this
paper, Noor et al. published a paper on a novel pharma-
covigilance inferential framework to infer mechanistic ex-
planations for asserted drug-drug interactions (DDIs) and
to deduce potential DDIs [12].
Although all of the published methods predict the like-

lihood of DDIs between two drugs, none explicitly pre-
dicts the resulting ADR effects. Furthermore, they do
not distinguish synergistic from antagonistic DDI effects,
i.e., those that reduce the severity of single-drug ADRs.
From a practical viewpoint, however, the ability to pre-
dict both the possibility of DDIs and their adverse health
effects is crucially important.
We recently developed a computational approach for

predicting the therapeutic potential of marketed drugs
based on genome-wide drug-protein interaction profiles
called the drug-protein interaction profile-based repurpos-
ing (DPIR) method [13]. Because both the desirable thera-
peutic and undesirable adverse effects are drug-induced
effects in humans, we can also apply this method to predict
ADRs caused by individual drugs. In the present study, we
expanded this method to predict potential DDI-induced
ADRs and carried out detailed cross-validation calculations
to demonstrate the performance and reliability of the
method. The results indicated that the approach was ro-
bust with respect to false positives and false negatives in
the training set. We therefore made predictions of DDI-
induced ADRs for all pairwise combinations of 764 com-
mercially available drugs. The results are publicly available
as a searchable database at http://avoid-db.bhsai.org.
We also highlighted the utility of the ADR models de-

veloped in this study by examining the overall aspects of
DDI-induced ADRs across 764 drugs and identifying ADRs
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among combinations of specific therapeutic drug classes.
The predictions can be used to examine drug alternatives
that avoid ADRs induced by specific combinations of
two classes of drugs (e.g., between an anti-infective
drug and an anti-convulsant drug). We further used
the models to prospectively examine drug combina-
tions that could induce bladder cancer and identified
combinations of pioglitazone and statins as potential
causes of concern [14].

Methods
Assumptions and definition of synergistic ADRs
Our approach is based on the assumption that drug-
protein interactions can be used as independent variables
in predicting ADRs. Although not all drugs exert their
therapeutic effect by directly binding to or modulating
protein targets, all drugs, once administered, systemically
interact with an array of human proteins. These interac-
tions can affect protein function either directly (inhibition,
activation, allosteric regulation, etc.) or indirectly by
modulating one or more proteins in pathways that affect
physiological processes (signaling, repair, apoptosis, etc.)
that could ultimately be manifested as a systemic reaction
(nausea, dizziness, heart disease, etc.). The mechanisms of
these interactions are largely unknown, and their com-
plexity defies a simple functional description based on
drug-protein interactions.
We define a synergistic DDI-induced ADR as aris-

ing from the simultaneous interactions between co-

administered drugs and their protein targets, which
cause a new or enhanced ADR beyond what either
drug can trigger on its own. Figure 1 schematically il-
lustrates this concept with two drugs that individually
interact with a number of proteins, each causing both
therapeutic effects and adverse reactions when admin-
istered alone. When the two drugs are given together,
more than one scenario is possible. In particular, we
were interested in cases where the adverse reaction is
triggered or enhanced by multiple protein targets ac-
tivated by two different drugs. We illustrate these
cases in Fig. 1, where Case I represents the induction
of a new adverse effect Φ and Case II the enhance-
ment of a previously known adverse effect Ω. Note
that in the case of two drugs having the same inter-
action profile (drugs i and j targeting protein δ to
cause the adverse effect Ψ in Fig. 1), a synergistic
ADR cannot occur.
In Case I, α and β represent two proteins required

to generate the DDI-induced ADR Φ, with drug i
interacting with α but not β and drug j interacting
with β but not α. Thus, taking each drug individually
does not activate the effect Φ. However, taking drugs
i and j together leads to simultaneous and separate
drug interactions with each protein, and hence the in-
duction of Φ.
In Case II, ζ represents a protein that can induce

the adverse reaction Ω through its interaction with
drug j. Co-administering drug i, which interacts with α,

Fig. 1 Schematic illustration of the drug-protein interactions necessary for drug-drug interaction (DDI)-induced adverse drug reactions (ADRs). Drugs i
and j interact with proteins α, β, γ, δ, ε, and ζ to induce both therapeutic effects as well as adverse effects Ψ, Ω, and Φ. In Case I, simultaneous drug
interaction with both proteins α and β is necessary for a DDI to induce ADR Φ. Because drug i interacts with α but not β and drug j interacts with β
but not α, no DDI occurs when the two drugs are administered individually. However, when the two drugs are co-administered, the requirement of
simultaneous drug interaction with both α and β, and hence the condition for DDI-induced ADR Φ, are satisfied. In Case II, an existing adverse effect Ω
caused by drug j is enhanced by drug i interacting with α, aggravating the adverse effect to a degree that is not possible by drug j alone
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leads to an enhancement of the original ADR Ω beyond
what is achieved by drug j alone. Thus, taking the drugs
together synergistically enhances the effect Ω.
The key methodological steps we devised to create

predictive models of DDI-induced ADRs included 1)
creating a scoring scheme that describes adverse reactions,
based on known drug-protein interactions; 2) defining an
appropriate model to capture synergistic interactions; 3)
creating drug-protein interaction profiles for marketed
drugs; 4) defining the protein interaction profiles for a
drug combination; and 5) parameterizing the models
by using existing clinical data. Furthermore, we developed
a searchable Web-accessible database of predicted
DDI-induced ADRs of all commercially available
drugs for which drug-protein interaction information
is available.

Scoring drug-protein interactions for an adverse health
effect
To predict drug-induced effects, the DPIR method ex-
ploits large-scale drug-protein interaction information in
the public domain. To estimate the likelihood that a
drug-protein interaction contributes to a therapeutic or
a side effect, we implemented the Laplacian-corrected
estimator used by Xia et al. [15]. Suppose there are N
drugs, M of which induce a specific ADR Φ. The base-
line probability of a random drug inducing Φ is then M/
N. Let us further assume that NB(α) of N drugs interact
with a specific protein α, and NA(α) of NB(α) drugs in-
duce the effect Φ. The probability that these drug-
protein interactions are responsible for the effect Φ is
then estimated as NA(α)/NB(α). This is not a statistically
reliable estimate when few drugs interact with protein α.
For instance, when NB(α) = 1 and NA(α) = 1, the prob-
ability is 100%, which is clearly an overestimate due to
under-sampling of this drug-protein interaction. When
more drugs interacting with this protein are included,
the probability estimate becomes more realistic. To cor-
rect for under-sampling, we considered adding K virtual
drugs that interact with this protein. A reasonable esti-
mate of the number of virtual drugs that induce Φ is
K ×M/N, which adjusts the estimated probability of the
drug-protein interactions responsible for the effect Φ to
(NA(α) + K ×M/N)/(NB(α) + K). This modification en-
sures that when the drug-protein interaction is ex-
tremely under-sampled, i.e., NB(α)→ 0, the probability
estimate approaches the baseline probability, M/N. In
our study, we used K =N/M so that the probability esti-
mate was expressed as (NA(α) + 1)/(NB(α) + N/M). When
this probability estimate is higher than the baseline
probability, M/N, the drug-protein interaction enhances
the ADR. Conversely, when it is lower, the drug-protein
interaction reduces the ADR.

On the basis of this estimate, we defined the protein
weight

wα ¼ log NA αð Þ þ 1ð Þ= NB αð Þ þN=Mð Þ½ �– log M=N½ �; ð1Þ

as the contribution of a drug interaction with protein α
to the drug-induced effect. Once the weights of all pro-
teins are determined by using a training data set for a
particular ADR Φ, we can assess the likelihood that an-
other drug induces the same ADR Φ. If gα(di) represents
the interaction of drug i with protein α and assumes a
value of 1 or 0 depending on the presence or absence,
respectively, of an interaction, then each interaction con-
tributes sα = gα(di) × wα to the effect, and the total score
S(Φ, di) is constructed by summing the contributions of
each protein. The higher this score for a drug, the more
likely it is to induce the same ADR Φ.
Compared to machine learning algorithms, the scoring

model described above has an important advantage in
that the only parameters to be determined are the
weights of the drug-protein interactions. Unlike most
other methods that determine model parameters by
minimizing an error function, we determine the model
parameters by a simple process. The process only re-
quires 1) counting the total number of drugs, N; the
number of positive drugs, M; the number of all drugs
interacting with protein α, NB(α); and the number of
positive drugs interacting with protein α, NA(α); and 2)
calculating the weight of protein α, wα, according to
equation (1). Because no parameter minimization is in-
volved, this process is computationally efficient and the
number of proteins that can be used is unlimited.

Scoring synergistic DDIs for an adverse health effect
The same approach can also be used to estimate the
likelihood of a pair of co-administered drugs i and j
causing an ADR by replacing the drug-protein inter-
action with the joint interaction of protein α with the
co-administered drugs gα(di)→ gα(didj), gβ(di)→ gβ(didj),
etc. We denoted the profile of these interactions across
all proteins as ĝ(di) or ĝ(didj). Because antagonistic DDIs
reduce the severity of ADRs, their effects are less likely
to be reported and collected in ADR reporting systems.
Therefore, DDI-induced ADR data should consist mostly
of data on synergistic DDI-induced ADRs. By definition,
the severity level of a synergistic DDI-induced ADR
should be higher than the sum of the ADR severity levels
induced by individual drugs. However, there is no straight-
forward definition of the sum of ADR severity levels,
and the relationship between the pharmacology of
drug action and the severity of a drug-induced effect
(represented by the reporting ratio) is non-linear.
Consequently, we require the score of a synergistic
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DDI-induced ADR to be at least higher than the
highest score of the individual drugs, i.e.,

S Φ; didj
� �

> max S Φ; dið Þ; S Φ; dj
� �� �

: ð2Þ
We therefore defined the synergistic DDI score as

follows:

DDI Φ; didj
� � ¼ S Φ; didj

� �
–max S Φ; dið Þ; S Φ; dj

� �� �
;

ð3Þ
where DDI(Φ,didj) must be higher than 0 for a synergis-
tic DDI-induced ADR. The higher the DDI score, the
more severe is its effect.

Data for drug-protein interaction profile ĝ(di)
To create large-scale drug-protein interaction profiles,
we downloaded all protein-chemical links from the
STITCH database [16]. This database (STITCH 4.0) con-
tains chemical-protein interaction information, derived
from a broad range of sources, between 300,000 small
molecules and 2.6 million proteins from 1,133 organisms.
Each entry of the database is associated with a confidence
measure, calculated by 1�Q

n 1� cnð Þ, where cn denotes
the confidence of the interaction from the nth information
source. In the STITCH database, scores of 0.40–0.70,
0.70–0.90, and 0.90–1.00 indicate medium, high, and
highest confidence levels, respectively.
To remove low-confidence chemical-protein interac-

tions, we filtered out entries in STITCH 4.0 with confi-
dence scores lower than 0.40. In addition, we only
retained entries of chemical interactions with human
(Homo sapiens) proteins. These two steps reduced the
total number of chemical-protein interaction entries
from >171 million to just over a half million. The cat-
egories of chemical-protein interactions with the highest
occurrence in the database are binding (chemical binds
to protein), inhibition (chemical inhibits protein func-
tion), activation (chemical enhances protein function),
and catalysis (chemical is a substrate of metabolic pro-
teins). To create drug-protein interaction profiles rele-
vant for predicting drug-induced effects in humans, we
only retained interactions from these four categories.
We used a binary string of 0 and 1 s to encode the

chemical-human protein interaction information of a drug
contained in the STITCH database. Each protein has four
designated positions in the string, with a 1 or 0 at each of
the positions representing whether or not the drug binds
to the protein, activates the protein, inhibits the protein,
or is metabolized by the protein, respectively.

Definition of drug pair-protein interaction profile ĝ(didj)
Because each drug targets different proteins for different
therapeutic effects and is likely to be associated with any
number of off-targets, taking multiple drugs simultaneously

is likely to affect more proteins than taking a single drug
alone. Thus, a pair of drugs i and j should have a protein
interaction profile ĝ(didj) more densely populated by 1 s
than the corresponding individual drug-protein interaction
profiles ĝ(di) and ĝ(dj). We created drug pair-protein inter-
action profiles by applying the logical OR operator on the
constituent drug-protein interaction profiles, as schematic-
ally illustrated in Fig. 2. This approach reduces the multiple
types of interaction in each classification category to a sin-
gle “interaction” that does not take into account additional
complexities (e.g., site-competition, or non-additive effects
at the molecular level). In essence, the total number of pro-
teins a drug pair interacts with is the sum of the unique
protein interactions from both drugs.

Data for ADRs induced by synergistic DDIs
To evaluate the performance of our approach, we used
the TWOSIDES database of Tatonetti et al. as the infor-
mation source for ADRs induced by synergistic DDIs
[17]. This database contains 868,221 significant associa-
tions between 59,220 pairs of drugs and 1,301 adverse
events that cannot be clearly attributed to either drug
alone, as well as 3,782,910 significant associations for
which the drug pairs have higher side-effect association
scores than those of the individual drugs alone. These
adverse events correspond to the definition of ADRs in-
duced by synergistic DDIs, for which we were interested
in developing predictive models. These data indicate that
about 23% (868,221/3,782,910) of the DDI-associated
ADRs may be considered novel, because they were re-
ported only when a drug pair was taken and not when
either drug was taken alone.
The TWOSIDES drug pair-ADR associations we used

to build the prediction models were derived from statis-
tical analyses of pharmacovigilance signals. As such, they
should not be considered as causal associations because
most of them may not have been validated in clinical
studies. Although the extensive pre-clinical and clinical
drug-development efforts expend considerable resources
to minimize toxicity and adverse drug reactions, the
DDI-induced adverse effects in the patient population
once a drug reaches the market are often initially de-
tected by pharmacovigilance and are largely of idiopathic
origin. Naturally, these associations do not imply caus-
ation, and may contain false positives. For a method de-
veloped to predict associations based on reported data
to be useful, it must be robust with respect to the inclu-
sion of false information. As we demonstrate in the next
section, detailed cross-validation analyses indicate that
moderate amounts of false information in the training
data have only a small impact on model performance.
From the drugs in the TWOSIDES database, we identi-

fied 645 compounds with unique STITCH compound IDs.
However, only 477 of these had drug-protein associations
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ĝ(di) with confidence scores of 0.40 or higher. Using these
drug-protein interaction profiles, we created drug pair-
protein interaction profiles ĝ(didj) for all unique pairwise
drug combinations. The profiles contained 2,637 unique
human proteins with an initial string length of 10,548 to
encode binding, activation, inhibition, and catalysis infor-
mation. Finally, we shortened the strings by deleting
protein-interaction columns only populated by 0 s, result-
ing in a final string length of 4,135.

Web-based searchable database of predicted DDI-induced
ADRs
We created a Web-based AdVerse effects Of Interacting
Drugs Database (AVOID-DB) to allow for interactive
query of our predicted DDI-induced ADRs. We devel-
oped the AVOID-DB and Web-based graphical user
interface (GUI) by using a three-tier software architec-
ture comprising a backend database, controller, and
presentation tiers. An Oracle database server using a re-
lational schema stores over 35 million DDI-induced
ADRs for fast searching. The controller and presentation
tiers implement the search logic and GUI, respectively.
We developed the controller and presentation tiers by
using Java Platform, Enterprise Edition 7, JavaServer
Faces 2.2, and PrimeFaces 6.0 technologies. We designed
the Web-based GUI to be responsive to both desktop
and mobile device Web-browsers. The GUI uses stan-
dards supported by modern Web browsers.

Results and Discussion
As described above (see Methods), we created drug and
drug-pair protein interaction profiles by using data from
the STITCH database [16], determined the contribution
of each protein to a DDI-induced ADR by using data in
the TWOSIDES database [17], and created models for
synergistic DDI-induced ADRs. We first evaluated the
models constructed and their performance with respect
to false positives and false negatives in the training data,

and determined the conditions for implementing robust
and predictive models for commercially available drugs.
Next, we applied the models to examine the ADRs
among the drugs and between specific drug classes, as
well as drug combinations that cause specific ADRs.

Assessment of robustness
To evaluate our method, we trained DDI-induced ADR
models by using different input sets to examine the im-
pact of varying the training set composition. This is im-
portant because DDI-induced ADR information is noisy,
given that it is generated from patient and physician re-
ports instead of being derived from carefully designed
clinical trials. False positives are unavoidable and true
negatives of high confidence are rare. A report of an
ADR induced by DDIs between two drugs indicates that
the drugs were co-administered and likely induced the
ADR via a DDI. In contrast, the absence of a report of
an ADR attributed to a drug pair may mean that no DDI
exists for the ADR (a true negative); the ADR requires
some time to develop or be recognized under co-
administration conditions (a false negative); or the two
drugs have yet to be co-administered (an unknown).
Thus, strictly speaking, there are few if any true negative
samples for training and evaluating the models. To
overcome this issue, some studies have developed and
evaluated DDI prediction models by using reported
DDI-inducing drug pairs as positives and an equal num-
ber of randomly made-up drug pairs as negatives [8, 9,
11]. In this study, we trained each ADR model by using
drug pairs positive for the ADR as positive samples and
all other drug pairs in the TWOSIDES database as puta-
tive negatives. We designated the putative negatives as
“baseline samples” to recognize that they may contain
heretofore unknown positives. Thus, the resulting
models were aimed at discriminating positive samples
from the background baseline samples. The premise
underlying this approach is that the number of drug

Fig. 2 Binary bit string representation of genome-wide drug-protein interaction profiles of individual drugs and drug combinations. In the bit
strings, the drug interaction with each protein is encoded by four bits representing binding (B), inhibition (I), activation (A), and catalysis (C). For
any drug, if information for an interaction is present in the STITCH database with at least a medium confidence level, the corresponding bit in the
string is turned on (assigned a value of 1); otherwise, it is turned off (assigned a value of 0). To generate a drug pair-protein interaction profile
ĝ(didj) from the constituent drug-protein interaction profiles ĝ(di) and ĝ(dj), we implemented the logical OR operation. Thus, we turned the bit off
when neither drug interacts with a protein; otherwise, we turned it on when interactions for either or both drugs are present
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pairs positive for an ADR is always a small fraction of the
number of all drug pairs. Thus, even if the baseline class
contains unrecognized drug pairs that are also positive for
the ADR, the number of positive drug pairs is negligibly
small compared with the total number of baseline sam-
ples. To assess the robustness of this approach, we varied
the number of true positive samples in the training set, as
well as the amounts of false negatives and putative false
positives in the training set, to investigate the impacts of
these variables on model performance.
Figure 3 shows our experimental design of using dif-

ferent training and test set samples to assess the effects
of including inadequate or false information in model
development. Type I models probe the effect of the
number of positive samples in the training set; type II
models investigate the impact of false negatives; and type
III models examine the impact of putative false positives.
To develop type I models, we randomly selected 10,

30, 50, 70, or 90% of the drug pairs associated with a
DDI-induced ADR as positives for inclusion in the train-
ing sets, together with half of the baseline samples. For
each selection, we used the remaining drug pairs as a

test set for calculating the area under the receiver oper-
ating characteristic curve (AUC). The AUC values range
from 0.5, which corresponds to a random model without
any predictive power, to 1.0, which corresponds to a per-
fect model. Sample selection for type II models was
similar to that for type I models, except that half of the
test set positives were assigned as baseline samples of
the training set for model development, i.e., we artifi-
cially enhanced the number of false negatives in the
training set. Sample selection for type III models was
again similar to that of type I models, except that the
training set positives were composed of a percentage of
true positives and an equal number of false positives
taken from the test set baseline samples, i.e., we artifi-
cially enhanced the number of false positives in the
training set. To derive statistically reliable results, we re-
peated the process of building a model and calculating
its AUC 50 times for each type of model and training-
set-sample composition.
We applied the experimental design described above

to four medically significant ADRs selected from the
TWOSIDES database, which collectively cover a broad

Fig. 3 Sample selection for training and evaluation of three types of model (I–III). For type I models, we used 10–90% of all drug pairs positive for
an ADR as the positive class for model training, with half of the other drug pairs in the TWOSIDES database used as the baseline class. We used
the remaining drug pairs as a test set for assessing model performance. Sample selection for type II models was the same as that for type I
models except that we moved half of the positive samples in the test set into the baseline class of the training set to provide known false
negatives. Sample selection for type III models was the same as that for type I models except that some randomly selected baseline samples in
the test set were moved into the positive class in the training set to provide false positives. The number of false positives was equal to the
number of true positives in the training set
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range of positive drug pairs: rheumatic heart disease
(Unified Medical Language System (UMLS) code
C0035439), 78 drug pairs; heat stroke (C0018843), 331
drug pairs; spontaneous abortion (C0000786), 897 drug
pairs; and vestibular disorder (C0042594), 1,022 drug
pairs. Figure 4 shows the model performance results,
with bar heights representing mean AUC values and
error bars indicating ±1 standard deviation. For all four
ADRs, AUC values increased with the number of posi-
tive samples in the training set, i.e., increasing positive
samples in the training set improved model perform-
ance. In addition, for all four ADRs, the AUCs of type I
models were comparable to those of type II models, in-
dicating that false negatives in the training sets had little
impact on model performance. On the other hand, false
positives had an appreciable negative impact on model
performance, especially for type III models built from a
small number of positive samples in the training set.
However, for all four ADRs, the AUC values of type III
models approached those of the corresponding type I
and type II models as the number of positives in the
training set increased. Hence, the impact of false infor-
mation diminished by increasing the number of positive
samples in the training set.
Given that each drug may interact with a large number

of proteins, one concern was that a model may be un-
duly dependent on one or a very small number of drug-

protein interactions. To assess this possibility, we exam-
ined the weights of the drug-protein interactions, as de-
fined by equation (1), of the rheumatic heart disease
model. The model was built by using the 78 drug pairs
as positive training samples and the rest of the drug
pairs in TWOSIDES as baseline samples. Figure 5, which
shows the numerical weights of all drug-protein interac-
tions of the model, indicates that the model consists of
contributions from a large number of drug-protein inter-
actions and is not dominated by one or a few such inter-
actions. In the drug-protein interaction profiles built
upon information from the STITCH database with
medium and higher confidence drug-protein interac-
tions, a drug interacts with 53 proteins on average, indi-
cating that the drug-protein interaction approach is not
biased toward only a few interactions.

Determination of the minimum number of positive
samples required
Insensitivity to false positives and false negatives in the
training set is a critical requirement for ADR models,
given the uncertain nature of the reported data. In con-
trast to therapeutic effects that are carefully evaluated in
clinical trials, the reporting threshold for drug-induced
adverse effects is low. A drug may be associated with an
ADR simply because one or more individuals taking the
drug experienced the adverse effect, without detailed

Fig. 4 Area under the receiver operating characteristic curve (AUC) derived from cross-validation studies by using three types of model (I–III) for
the following adverse drug reactions (ADRs): rheumatic heart disease (Unified Medical Language System code C0035439), heat stroke (C0018843),
spontaneous abortion (C0000786), and vestibular disorder (C0042594). These ADRs were correspondingly associated with 78, 331, 897, and 1022
drug pairs. For all panels, the horizontal axis represents the percentage of positive samples for an ADR used in the model training. The error bars
show ±1 standard deviation from 50 simulations, using randomly selected training and test set samples
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analyses of potential confounds or other possible causes
such as foods or other drugs consumed at the same time.
Establishing causal relationships between a drug and
ADRs, let alone DDIs to an ADR, is not a trivial matter
[17]. Because of the unavoidable presence of false positives
and false negatives in the ADR data set, we first
needed to determine the minimal information needed
to operate our models.
Figure 4 shows that when 90% of all positive samples

were used to train the models, the resulting models were
highly robust, with AUCs in the 0.8 to 1.0 range. How-
ever, when fewer positive samples were used, model
performance appreciably declined, especially for the
rheumatic heart disease model, which had only 78 posi-
tive samples. The AUC of the model built from 10% of
the positive samples (8 drug pairs) was between 0.5 and
0.6, close to that of a random model.
Additional cross-validation calculations for a large

number of ADRs indicated that the number of positive
samples in the training set was the most crucial factor
for developing a predictive model. When the training set
included less than 50 positive samples, the resulting
AUCs of many models fell in the range of 0.5 to 0.6.
Thus, we selected the minimum requirement for model
building to be at least 50 positive ADR samples.

Parameterization, evaluation, and instantiation of DDI-
induced ADR models
On the basis of the above results, we trained our final
models for all ADRs associated with 50 or more drug
pairs in the TWOSIDES database and drugs with
medium or higher confidence drug-protein interaction
information in the STITCH database. To build the final
model for an ADR, we parameterized the model using
all drug pairs reported to be associated with the ADR in
the TWOSIDES database as positives and all other drug
pairs in the database as baseline samples. To assess the
quality of the resulting models, we performed 10-fold
cross-validation for each model. That is, for each ADR,
we segregated both positive and baseline drug pairs

randomly into 10 groups, and used nine of the groups to
train the model and the left-out group to evaluate the
resulting model. We repeated this process nine times so
that each group was left out once.
Figure 6 shows that the resulting AUCs fell in the

range of 0.7 to 1.0 and generally decreased as the number
of drug pairs associated with the ADRs increased. Among
the models, 176, 699, and 221 had AUCs in the ranges of
0.7–0.8, 0.8–0.9, and 0.9–1.0, respectively. The average
AUC of all models was 0.85 with a standard deviation of
0.05. The general trend of higher AUC values associated
with fewer positive drug pairs may be attributed to the
ADRs being associated with pharmacologically well-
defined drug interactions with a smaller number of spe-
cific proteins. Conversely, if an ADR is caused by many
drug pairs (e.g., nausea, which is associated with more
than 16,000), developing a predictive model with high
specificity becomes more difficult because manifestation
of the ADR can be traced to a very large number of
drug-protein interactions. We also examined whether
the reported number of ADRs for a drug pair would
affect model performance. The results indicated that
model performance, as measured by the AUC, is
largely insensitive to the number of reported ADRs,
suggesting that the model construction is robust with
respect to the propensity of a drug to be associated
with ADRs (Additional file 1: Figure S2).
As a measure of model quality, the AUC reflects a

model’s ability to enrich positives in high-scoring samples.
To make categorical predictions, we needed a DDI score
threshold that would classify a drug pair as positive if its
score were higher than the threshold and negative other-
wise. To be consistent with equation (2), the lowest
threshold value is 0. Table 1 shows the AUC, accuracy,
sensitivity, and specificity of the four representative ADR
models, as well as the average values for all 1,096 predic-
tion models, one for each ADR. The overall categorical
predictions showed a mean accuracy of 0.89, a mean sen-
sitivity of 0.63, and a mean specificity of 0.90. These per-
formance measures are adequate for a balanced sample

Fig. 5 Weights of the drug-protein interactions contributing to the rheumatic heart disease (C0035439) model. The positions on the horizontal
axis represent specific drug-protein interactions; the heights of the blue bars denote the weights of the drug-protein interactions in the ADR
model. The figure demonstrates that the ADR model is not dominated by only one or a few drug-protein interactions
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distribution in which the positive and non-positive classes
are roughly of equal size. However, the occurrence of
DDI-induced ADRs is highly unbalanced. For a specific
DDI-induced ADR, only a very small fraction of all pos-
sible drug pairs are positive. As a result, a useless model
that predicts all drug pairs to be negative for any DDI-
induced ADR would have a perfect specificity and very
high accuracy. A more practical performance measure for
such situations is the positive predictive value (PPV), also
known as precision. This is defined as the ratio of the
number of true positives (TP) to all predicted positives, in-
cluding both true and false positives (FP),

PPV ¼ TP= TPþ FPð Þ; ð4Þ

and is a measure of the probability that positive predic-
tions truly are associated with the ADR. Table 1 shows
that with a DDI score threshold of 0, the PPVs of the
four representative ADR models ranged from 2 to 7%,

and the average PPV of all 1,096 ADR models was 9%.
They appear lower than what might be considered desir-
able. This is at least partly because the number of posi-
tive drug pairs for many ADRs was extremely small
compared with the total number of all possible drug
pairs. For example, only 78 drug pairs in the TWOSIDES
database were associated with rheumatic heart disease.
The total number of unique drug pairs was 113,526.
Hence, the probability that a randomly selected drug
pair will induce this disease is therefore 0.069%. Al-
though the PPV of the rheumatic heart disease model
was only 2%, it represented a 29-fold enrichment of pos-
itives relative to a uniform distribution of positives
among all drug pairs.
One parameter that may affect the PPV is the DDI

score threshold. To assess its impact, we normalized the
DDI scores by dividing each score derived from equation
(3) by the maximum score of each model and multiply-
ing it by 100, so that the maximum score of each model
was 100. We then calculated all performance measures
of each model, using normalized DDI score thresholds
of 0, 10, 20, …, and 90 for categorical predictions.
Figure 7 shows the average values of model performance
measures across all 1,096 ADR models. A threshold of 0
yielded the most balanced performance measures, with
the least separation between sensitivity and specificity.
For most models, increasing the threshold increased the
PPV, as it reduced the number of false positives. How-
ever, with an elevated threshold, both the PPV variance
and the number of false negatives also increased. As a
result, for some models, the PPV initially increased with
higher DDI-score thresholds, reached a maximum, and
then dropped off with increased threshold values.

Predictions of DDI-induced ADRs for drugs on the market
The TWOSIDES database contains synergistic DDI-
induced ADR information for 645 drugs and 1,318

Fig. 6 Area under receiver operating characteristic curve (AUC) for 1,096 models of adverse drug reactions (ADRs), estimated from 10-fold cross-validation
studies. Each circle represents an ADR prediction model with its AUC value on the vertical axis and the number of drug pairs that induced this ADR on the
horizontal axis. The ADR model with the most drug pairs was nausea (Unified Medical Language System code C0027497), with >16,000 constituent pairs

Table 1 Operational characteristics of adverse drug reaction
(ADR) models

Adverse drug reaction AUC Accuracy Sensitivity Specificity PPV

Exemplar ADR models

Rheumatic heart disease 0.97 0.96 0.81 0.96 0.02

Heat stroke 0.90 0.84 0.83 0.85 0.02

Spontaneous abortion 0.84 0.89 0.63 0.89 0.05

Vestibular disorder 0.91 0.91 0.73 0.91 0.07

All 1,096 ADR models

Mean 0.86 0.89 0.63 0.90 0.09

Standard deviation 0.05 0.05 0.15 0.05 0.08

The performance of models to predict ADRs induced by drug-drug interactions
(DDIs) were estimated from 10-fold cross-validation. The values were calculated
by using a DDI score threshold of 0.0 for all ADRs. The calculated positive
predictive values (PPV) are given for the developed ADR models
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ADRs. The number of unique pairwise combinations of
645 drugs is 207,690. The possible number of unique
drug pair–ADR associations between 207,690 drug pairs
and 1,318 ADRs is 274 million, whereas the TWOSIDES
database “only” contains 4.7 million drug pair–ADR as-
sociations. Thus, this latter information may only repre-
sent a small fraction of all possible DDI-induced ADRs.
Considering that the total number of United States Food
and Drug Administration–approved drugs is well over
1,000, the possibility remains that a large number of
DDI-induced ADRs are still unrecognized.
By using our ADR models, we can make predictions

for any drug combination, provided that drug-protein
interaction information is available, to identify candidate
DDI-induced ADRs. We examined 1,332 drugs on the
market and used the information in STITCH 4.0 to cre-
ate drug-protein interaction profiles for 764 drugs. For
each pairwise drug combination, we calculated DDI-
induced ADR scores by all of the models and provided
categorical predictions for whether the drug pairs con-
tribute to ADRs via synergistic DDIs. We thus generated
over 36 million positive drug pair–ADR associations.
This roughly corresponds to 10% of all possible drug
pair–ADR associations. We also used the TWOSIDES
data to determine DDI-score thresholds for 10, 20, 30,
40, and 50% PPV predictions via 10-fold cross validation.
We then used these DDI-score thresholds to make cat-
egorical predictions for pairwise combinations of the
764 drugs so that the predictions could be associated
with different PPV-confidence levels.
To make our predictions readily accessible, we devel-

oped a Web-based query utility for searching the pre-
dicted positives for any of the 1,096 ADRs, using one or
two of the 764 drug names. Figure 8 shows a screenshot
of the application. The data can be queried by using one

or two drug names (common synonyms are recognized),
the ADR names, the UMLS codes of ADRs, or a com-
bination of drug names and ADRs, as well as the PPV
threshold. When the query consists of a single drug, the
search returns all combinations of that drug with each
of the other 763 drugs, for which the DDI score is posi-
tive, from among the 1,096 ADR models. When the
query consists of two drugs, the search returns all ADR
models that yield positive DDI scores for the drug com-
bination. When the query is based on an ADR name or
UMLS code only, the search returns all pairwise drug
combinations with positive DDI scores. When available,
the results page provides information links to DrugBank
[18] for drug information and the National Library of
Medicine MedGen resources [19] for adverse health ef-
fects. The Web-accessible database is publically available
at http://avoid-db.bhsai.org.

Applications of DDI-induced ADR models
We used the developed models to examine both broader
aspects of the occurrence of DDI-induced ADRs among
the 764 drugs for which we could make predictions and
the susceptibility of particular drug-classes to be gener-
ally involved in ADRs.

General occurrence of predicted DDI-induced ADRs
Figure 9 shows two-way clustering of the number of
ADRs associated with each possible drug-pair predicted
by the ADR models. The data segregated into four
groups of drugs (clusters C1–C4). This highlights the
observation that certain drugs and drug combinations
were associated with different rates of ADR occurrence,
indicating inherent differences in their propensity to
trigger DDI-induced ADRs. The drugs in clusters C1
and C2 were associated with numerous ADRs (typically

Fig. 7 Impact of increasing the normalized DDI score threshold on average measures of prediction performance for 1,096 ADR models evaluated by
10-fold cross validation. The error bars indicate ± 1 standard deviation. The faint lines, which represent PPV traces of several ADRs, show that all initially
increase with the DDI score threshold, but some reach a maximum and then fluctuate or drop off with further increases in the DDI score threshold
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greater than ~800 and ~500, respectively), whereas clus-
ters C3 and C4 were, respectively, associated with mod-
erate and small numbers (typically less than ~50 for the
latter) of ADRs. The rate of ADR occurrence among
drugs can be regarded as a proxy for the likelihood that
a DDI-induced ADR will occur. We further examined
whether we could categorize specific drug classes ac-
cording to rate of ADR occurrence. Table 2 shows the
percentage of drugs for a given ATC code and their rate
of occurrence in clusters C1–C4. The relative abundance
of a particular drug class in clusters C1 and C2 indicates
that these drugs are preferentially associated with
DDI-induced ADRs. In particular, we found frequently
occurring ADRs among drugs targeting the cardiovas-
cular (ATC code C) and musculo-skeletal (ATC code
M) systems. Conversely, antineoplastic and immune-
modulating agents (ATC code L) were preferentially
associated with non DDI-induced ADRs.

Specific examples of drug and drug-class combinations
Our analysis captured the DDI-induced ADRs known to
occur between the anti-fungal drug ketoconazole and pro-
ton pump inhibitors (PPIs), such as omeprazole (Prilosec)
[20]. PPIs alter gastric pH and thus reduce the anti-fungal
activity of ketoconazole [20]. In our analysis, the PPIs pan-
toprazole, omeprazole, and lansoprazole ranked 1st, 2nd,
and 10th, respectively, among drugs with the most DDI-
induced ADRs associated with ketoconazole. This indi-
cates that PPIs have the potential to induce a plethora of
DDI-induced ADRs. Further analysis revealed a general
class effect between these PPIs and non-steroidal anti-
inflammatory drugs (NSAIDs). Figure 10 shows an in-
creased number of DDI-induced ADRs associated with
combining drugs from the two classes.
We also predicted the likelihood of DDI-induced ADRs

between anti-convulsant drugs (ATC code N) and anti-
infective agents (ATC code J). Figure 11a shows that the

Fig. 8 Screenshot of the AdVerse effects Of Interacting Drugs Database (AVOID-DB). The database can be queried with the name of a single drug
to retrieve all predicted DDI-induced ADRs associated with the drug, or with two drug names to retrieve all DDI-induced ADRs associated with
the two drugs. Similarly, the database can be queried with one or more specific ADRs to retrieve all drug pairs causing the ADRs via synergistic
DDIs. The drug and ADR names, which constitute a controlled vocabulary, can be selected from among the available names in the database.
When available, the drug and ADR names are cross-linked to DrugBank and National Library of Medicine resources for further information. The
normalized DDI (Φ,didj)-scores are color-coded from dark to light red for visual guidance. The Web page is accessible at http://avoid-db.bhsai.org
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Fig. 9 Two-way clustering of predicted DDI-induced ADRs. We included all drugs on the market for which we could make predictions. Each element
in the matrix represents the number of ADRs caused by each drug pair. The drugs roughly formed four clusters (C1–C4), where cluster C1 was associated
with the most ADRs and cluster C4 with the least

Table 2 Drugs grouped by Anatomical Therapeutic Chemical (ATC) classification code and their relative distribution in clusters
C1–C4 based on the similarity of their predicted adverse drug reactions induced by synergistic drug-drug interactions (ADRs)

ATC
code

Classification All drugs C1
%

C2
%

C3
%

C4
%

ADR

N %

A Alimentary tract and metabolism 64 10 12 14 10 8 ~

B Blood and blood forming organs 12 2 2 1 1 4 ~

C Cardiovascular system 88 14 22 24 11 8 + +

D Dermatologicals 19 3 2 0 4 5 –

G Genito/urinary system and sex hormones 28 5 0 4 6 7 –

H Systemic hormonal preparations 9 1 0 1 <1 4 –

J Anti-infectives for systemic use 34 6 6 7 5 5 ~

L Antineoplastic and immune-modulating agents 61 10 1 1 11 20 – –

M Musculo-skeletal system 45 7 16 7 4 5 + +

N Nervous system 167 27 29 28 31 21 ~

P Anti-parasitic products, insecticides, and repellents 10 2 0 0 2 3 –

R Respiratory system 49 8 6 11 8 7 ~

S Sensory organs 11 2 2 1 2 2 ~

V Various 16 3 3 2 3 2 ~

Only drugs that have an ATC classification are included. The last column indicates the propensity of ADRs to be preferentially associated with compounds in clusters C1
and C2 (+ +), have no preferential association with drugs in any cluster (~), or be preferentially associated with compounds in clusters C3 and C4 (– or – –), respectively.
Each column sums to 100% and the values indicate the distribution of drugs among the ATC classification for each cluster. The number of DDI-induced ADRs for each
drug was highly variable, indicating no systematic variation of DDI-induced ADRs on a per drug basis among the ATC drug classes
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anti-convulsant drugs gabapentin, valproic acid, lorazepam,
diazepam, and carbamazepine were associated with rela-
tively high numbers of DDI-induced ADRs when taken to-
gether with commonly used anti-infective agents, such as
ciprofloxacin and ofloxacin. Conversely, other anti-
convulsant drugs, such as zonisamide and vigabatrin,
showed a low rate of ADR occurrence with anti-infective
drugs. Widely prescribed anti-infectives, including cipro-
floxacin, ofloxacin, gatifloxacin, and norfloxacin, belong to
the class of fluoroquinolone anti-bacterial agents [21].

Among these, norfloxacin had a lower adverse DDI score
when combined with an anti-convulsant than did cipro-
floxacin or ofloxacin. Nafcillin, a penicillin-based anti-
infective drug, had the highest number of ADRs when
combined with an anticonvulsant. Our analyses suggest
that when there is an option to choose an anti-infective for
patients on treatment with anti-convulsant drugs, norfloxa-
cin is preferable to ciprofloxacin. Similarly, Fig. 11b shows
that the number of DDI-induced ADRs associated with
anti-diabetic drugs (ATC code A) and common NSAIDs

Fig. 10 Class effect between proton pump inhibitors and non-steroidal anti-inflammatory drugs. All non-steroidal anti-inflammatory drugs exhibited
DDI-induced ADRs with the proton pump inhibitors lansoprazole, pantoprazole, and omeprazole. ATC, anatomical therapeutic chemical classification;
ADR, adverse drug reaction; NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors

Fig. 11 DDI-induced adverse drug reactions associated with specific drug classes. a Effects of jointly administering anti-infective (ATC code J) and
anti-convulsant (ATC code N) drugs. b Effects of jointly administering anti-diabetics (ATC code A) and non-steroidal anti-inflammatory drugs (NSIADs,
ATC codes M, N, and S) or proton pump inhibitors (ATC code A). ATC, anatomical therapeutic chemical classification; ADR, adverse drug reaction
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or PPIs varied widely. Anti-diabetic drugs, such as pioglita-
zone, metformin, and mitiglinide, were associated with a
large number of DDI-induced ADRs, whereas alternatives,
such as chlorpropamide, tolbutamide, and troglitazone,
had a lower propensity to cause such ADRs. Thus, our
analyses and tools can suggest alternative drugs that, when
taken in combination with a required drug, may lower the
likelihood of DDI-induced ADRs.

Spontaneous abortion, vestibular disorder, heat stroke, and
rheumatic heart disease
We examined in detail the drug combinations that were
associated with the ADRs listed in Table 1. In this analysis,
we used the calculated score for the particular ADR to
cluster drug combinations. Figure 12 shows the com-
pounds clustered by the score for inducing spontaneous
abortion as predicted from all drug combinations, where
each element in the matrix represents the DDI(Φ,didj)
score as calculated from equation (3). The drugs could
roughly be grouped into three main categories denoted as
N, M, and S, which represent compounds with little pro-
pensity to cause spontaneous abortion, those with moder-
ately higher scores, and those with the highest scores,
respectively. For spontaneous abortion, 97.1% of all drug
combinations were associated with category N, 2.3% with
category M, and 0.6% with category S. This indicates that
most drug combinations were not strongly associated with
high DDI(Φ,didj) scores for spontaneous abortion.

Table 3 entries reflect the relative enrichment of an
ATC class of compounds within a specific severity level
of a given ADR. For example, of all the compounds clas-
sified as strongly (“S”) associated with inducing the ADR
“Spontaneous abortion,” 63% belong to ATC M “Ner-
vous system” compounds. This information captures
what drug classes are most frequently associated with a
DDI-induced ADR. Furthermore, this table also shows
entries in bold, providing a visual means to gauge the
enrichment of the severity level (moderate M, strong S)
compared to the absence of a DDI-induced ADR (none
N) for a given ATC compound class.
The underlying numbers used to construct Tables 2 and

3 are provided in Additional file 1: Tables S1 and S2.

Bladder cancer as a DDI-induced ADR
Bladder cancer is one of the commonly occurring cancers
among men in developed countries [22]. Two high-scoring
drug combinations for inducing bladder cancer were
pioglitazone-simvastatin and pioglitazone-metformin, with
normalized DDI scores of 73.3 and 58.1, respectively. A
review of the literature showed that pioglitazone, an
anti-diabetic drug belonging to the class of thiazolidi-
nediones, is associated with an increased risk of bladder
cancer [23, 24]. Simvastatin is an extensively prescribed
cholesterol-lowering drug of the statin family of 3-
hydroxy-3-methylglutaryl-coenzyme A reductase inhibi-
tors. Vinogradova et al. reported an increased risk of

Fig. 12 Two-way clustering of spontaneous abortion DDI scores. We included all drugs on the market for which we could make predictions. Each
element in the matrix represents the DDI(Φ,didj) score as calculated from equation (3) for causing spontaneous abortion (Unified Medical Language
System C0000786) for each drug pair. The compounds roughly formed three drug-pair categories: N, those that do not cause spontaneous abortion; M,
those with moderately high DDI(Φ,didj) scores; and S, those associated with the highest scores
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bladder cancer in patients taking statins for more than
4 years [14], whereas others have reported no association
between statin use and increased risk of any cancer, in-
cluding that of the bladder [25]. We found no studies on
the potential DDI associated with thiazolidinediones
and statins. Our analysis showed that the combined
use of pioglitazone and simvastatin has the potential
to induce or enhance bladder cancer through DDIs.
Because these are drugs in common use, an analysis
of this drug combination for risk of bladder cancer
complications would be useful.

Limitations
We based our analysis on the assumption that the drug-
protein interaction profile carries important pharmaco-
logical and toxicological information that can be related
to ADRs. This assumption might not hold for adverse ef-
fects that cannot primarily be traced back to events medi-
ated by or through drug-protein interactions (e.g., those
due to drugs that have a high intrinsic affinity for non-
proteins, such as DNA, or have a high affinity for cellular
fractions limited in the diversity of proteins, such as spe-
cific membrane- or fat-fractions). At the same time, drugs
that lack such protein interactions will have few or pos-
sibly no entries in the STITCH database. Consequently,
we were unable to instantiate such models.
The developed models provided categorical predic-

tions of ADRs due to synergistic DDIs without consider-
ing dose or regimens as a factor. All drugs are toxic at

sufficiently high doses; likewise, if drugs are taken in suf-
ficiently small doses or for very short durations, their
combination may not induce an ADR. Thus, the predict-
ive ADR models provide information on the potential of
particular drug combinations to induce an ADR rather
than the actual event itself. Similarly, our models do not
account for the susceptibility, sensitivity, or general
physical health of individual patients, even though they
may play an important role in individual cases.
We trained the models to predict ADRs for pairwise

drug combinations. However, patients may actually be
taking more than just two drugs at any time—a situation
that could affect the outcome. Although the computa-
tional framework allows for including any number of
combinations in the drug-protein profiles, we do not
have sufficient information to validate these predictions.
Accordingly, we limited the scope of the current work to
include only pairwise combinations.

Conclusions
ADRs cause considerable morbidity and mortality des-
pite the extensive pre-clinical and clinical studies that
precede drug approval and marketing. ADRs due to
combinations of two or more drugs are especially insidi-
ous because prospective testing and evaluation of drug
safety for all possible combinations is impossible; conse-
quently, instances and warnings of DDI-induced ADRs
are usually generated after drug approval. This means
that significant risks of experiencing these ADRs are

Table 3 Predicted distribution of different drug classes associated with four adverse drug reactions (ADRs)

ATC Classification Spontaneous abortion Vestibular disorder Heat stroke Rheumatic heart disease

N M S N M S N M S N M S

(%) (%) (%) (%)

A Alimentary tract and metabolism 10 13 13 12 2 7 10 14 9 11 9 5

B Blood and blood forming organs 2 0 2 2 0 0 3 0 0 2 0 0

C Cardiovascular system 17 1 11 9 35 39 18 10 3 11 45 24

D Dermatologicals 3 1 2 4 2 0 4 1 1 3 2 0

G Genito/urinary system and sex hormones 4 11 0 5 3 5 6 4 1 5 0 0

H Systemic hormonal preparations 2 0 0 2 2 0 2 0 0 2 2 0

J Anti-infectives for systemic use 7 4 0 6 9 0 6 8 4 6 2 0

L Antineoplastic and immune-modulating agents 12 0 2 12 5 0 15 0 0 10 9 5

M Musculo-skeletal system 8 6 4 6 14 8 8 7 6 7 6 7

N Nervous system 20 47 63 27 15 40 14 31 69 25 19 60

P Anti-parasitic products, insecticides, and repellents 2 2 0 2 0 0 2 2 0 2 0 0

R Respiratory system 7 15 4 9 8 0 6 18 6 9 0 0

S Sensory organs 2 0 0 2 3 2 2 4 0 2 0 0

V Various 3 0 0 3 3 0 4 0 1 2 6 0

We classified the drugs by two-way clustering of their DDI-induced ADR scores calculated from equation (3) into three categories: no ADR induction (category N),
moderate ADR induction (category M), and strong ADR induction (category S). Fractions in categories M and S that are twice as large as the fraction in category N
are indicated in bold. The columns sum to 100%, and the values characterize the distribution of drugs among the Anatomical Therapeutic Chemical (ATC) classifications
for each cluster
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actually borne by patient populations most likely to take
multiple drugs—for example, the elderly and other vul-
nerable populations affected by comorbidities.
A robust in silico method that predicts ADRs would

provide an easily accessible tool to evaluate and avoid
these effects. The method we developed in this work is
robust with respect to false positives and false negatives
in the clinical data used to build the models. The final
models deployed had an overall mean accuracy of 89%,
sensitivity of 63%, and specificity of 90%.
We made categorical predictions for pairwise combi-

nations of nearly 800 drugs presently on the market.
The predictions indicated that 90% of the combinations
are unlikely to cause DDI-induced ADRs. Conversely,
the results suggest that of the potential ADRs associated
with 10% of the combinations, only a small fraction is
clinically recognized at present. Our analyses using the
rate of occurrence as well as the DDI scores associated
with model predictions revealed drug classes highly
likely to be involved in DDI-induced ADRs, such as
those targeting the cardiovascular or musculo-skeletal
systems. The models also captured class effects between
different categories of drugs, such as NSAIDs and PPIs,
as well as between different types of therapeutic targets,
such as anti-infective and anti-convulsants. Such infor-
mation could be used to select combinations that avoid
potential ADRs, or suggest alternative therapeutics that
minimize the number of DDI-induced ADRs. As an ex-
ample, we also examined DDI-induce bladder carcinoma
predictions and identified drug combinations supported
by the literature but not yet reported in the clinic. These
results highlight the potential prospective use of our
models in pharmacovigilance. Furthermore, the Web-
accessible and searchable database developed here provides
a means to quickly examine and download the results of
our predictions for a particular drug, drug combination, or
potential adverse health effect.
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