MEETING ABSTRACT

A PET microdosing study with the P-glycoprotein inhibitor tariquidar

Martin Bauer¹, Markus Zeitlinger¹, Cécile Philippe², Johann Stanek^{1,3}, Wolfgang Wadsak², Markus Mitterhauser², Georgios Karanikas², Markus Müller¹, Oliver Langer^{1,3*}

From 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

Background

The adenosine triphosphate-binding cassette transporters P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) restrict absorption and body distribution and promote excretion of several clinically used drugs. Tariquidar (XR9576) is a potent third-generation dual Pgp and BCRP inhibitor, which is currently tested in clinical trials to overcome chemoresistance of tumors and to enhance brain distribution of Pgp/BCRP substrate drugs. We performed a positron emission tomography (PET) microdosing study with carbon-11-labelled tariquidar ([¹¹C]tariquidar) which aimed at assessing the brain distribution of [¹¹C]tariquidar in healthy volunteers.

Methods

Six healthy subjects received an i.v. bolus injection of approximately 400 MBq of [¹¹C]tariquidar containing less than 30 μ g of unlabelled tariquidar. Then, dynamic brain PET scans and arterial blood sampling were performed. Radiolabelled metabolites of [¹¹C]tariquidar in plasma were measured with a solid-phase extraction/HPLC assay. Brain activity uptake was expressed as the ratio of the area under the whole brain grey matter time-activity curve to the area under the plasma time-activity curve from time 0 to 60 min (AUC_{0-60 brain}/AUC_{0-60 plasma}).

Results

Brain activity uptake was low after injection of $[^{11}C]$ tariquidar with a mean AUC_{0-60 brain}/AUC_{0-60 plasma} of 0.14 ± 0.03. At 60 min after radiotracer injection, 78 ± 12% of total radioactivity in plasma was in the form of

¹Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria

Full list of author information is available at the end of the article

© 2012 Bauer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

unchanged parent radiotracer. Less than 1% of the total injected dose excreted in urine over 90 min.

Conclusions

Low brain uptake of radioactivity is consistent with tariquidar being, at microdoses, a dual substrate of Pgp and BCRP. [¹¹C]Tariquidar PET after inhibition of Pgp with unlabelled tariquidar may be a promising approach to selectively assess BCRP function at the human blood-brain barrier.

Acknowledgements

Funded by the European Community's Seventh Framework Program (grant agreement 201380 (Euripides)) and Austrian Science Fund (FWF) project "Transmembrane Transporters in Health and Disease" (SFB F35).

Author details

¹Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. ²Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria. ³Health and Environment Department, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.

Published: 17 September 2012

doi:10.1186/2050-6511-13-S1-A17

Cite this article as: Bauer *et al.*: **A PET microdosing study with the P-glycoprotein inhibitor tariquidar.** *BMC Pharmacology and Toxicology* 2012 **13**(Suppl 1):A17.

^{*} Correspondence: oliver.langer@meduniwien.ac.at