

# **ORAL PRESENTATION**

Open Access

# MicroRNA miR-425 is a negative regulator of atrial natriuretic peptide

Pankaj Arora<sup>1,2,3,4</sup>, Connie Wu<sup>5</sup>, Donald B Bloch<sup>6,7</sup>, Brandi N Davis-Dusenbury<sup>8</sup>, Ester Spagnolli<sup>5</sup>, Akiko Hata<sup>9</sup>, Sara Vandenwijngaert<sup>10</sup>, Melissa Swinnen<sup>10</sup>, Stefan Janssens<sup>10</sup>, Emmanuel S Buys<sup>5</sup>, Kenneth D Bloch<sup>1,2,5\*†</sup>, Christopher Newton-Cheh<sup>1,2,3,4†</sup>, Thomas J Wang<sup>1,2†</sup>

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

## **Background**

Numerous common genetic variants have been linked to blood pressure, but no underlying mechanism has been elucidated. Population studies have revealed that a genetic variant, rs5068 (A/G), is associated with blood pressure and the risk of hypertension. rs5068 lies in the 3' untranslated region (3'UTR) of *NPPA*, the gene encoding atrial natriuretic peptide (ANP), and presence of the minor G allele is associated with increased circulating ANP levels and reduced blood pressure.

## **Results**

We hypothesized the existence of a microRNA (miR) that targets the NPPA 3'UTR and that the binding of the miR to the NPPA 3'UTR would be disrupted in transcripts from the rs5068 minor allele. We identified a microRNA, miR-425, that is predicted to bind the sequence spanning rs5068 for the A, but not the G, allele. miR-425 is expressed in human atria and ventricles. Using luciferase-3'UTR reporter constructs, we observed that miR-425 could silence reporter mRNAs carrying the NPPA major allele 3'UTR, but not those carrying the minor allele 3'UTR. Similarly, an anti-miR directed against miR-425 augmented expression of the luciferase-NPPA 3'UTR construct containing the major allele but not the minor allele. miR-425 reduced NPPA mRNA levels and ANP synthesis in human cardiomyocytes derived from induced pluripotent stem cells.

#### Conclusion

Our studies provide mechanistic insights into how a common genetic variant identified in population genetic studies can regulate ANP levels and blood pressure. miR-425 is a novel regulator of ANP production, raising the possibility that miR-425 antagonists could be used to treat disorders of salt overload, including hypertension and heart failure.

#### Authors' details

<sup>1</sup>Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA. <sup>2</sup>Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA. <sup>3</sup>Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts General Hospital, Boston, Massachusetts, USA. <sup>4</sup>Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA. <sup>5</sup>Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. <sup>6</sup>Division of Rheumatology, Allergy, and Clinical Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA. <sup>7</sup>Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA. <sup>8</sup>Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. <sup>9</sup>Cardiovascular Research Institute, University of California, San Francisco, CA, USA. <sup>10</sup>Department of Cardiovascular Sciences, Gasthuisberg University Hospital, University of Leuven, Belgium.

Published: 29 August 2013

doi:10.1186/2050-6511-14-S1-O10

Cite this article as: Arora et al.: MicroRNA miR-425 is a negative regulator of atrial natriuretic peptide. BMC Pharmacology and Toxicology 2013 14(Suppl 1):O10.

Full list of author information is available at the end of the article



<sup>\*</sup> Correspondence: kdbloch@partners.org

<sup>†</sup> Contributed equally

<sup>&</sup>lt;sup>1</sup>Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA