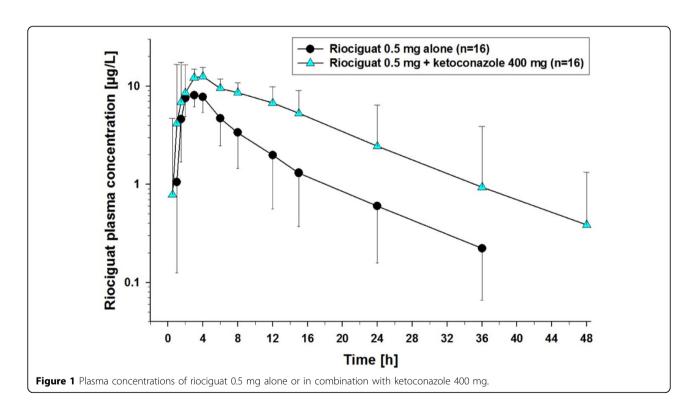


### **POSTER PRESENTATION**

**Open Access** 

# Pharmacokinetic interaction of ketoconazole, clarithromycin, and midazolam with riociguat


Corina Becker<sup>1\*†</sup>, Reiner Frey<sup>1</sup>, Sigrun Unger<sup>2</sup>, Dirk Thomas<sup>1</sup>, Michael Reber<sup>1</sup>, Gerrit Weimann<sup>1</sup>, Hartmut Dietrich<sup>3</sup>, Erich R Arens<sup>1</sup>, Wolfgang Mueck<sup>1</sup>

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

#### **Background**

Riociguat, an oral soluble guanylate cyclase stimulator, is under investigation for pulmonary hypertension treatment. Cytochrome P450 (CYP)-mediated oxidative metabolism is one of the major riociguat clearance pathways.

The pharmacokinetic interactions between riociguat and ketoconazole (multi-pathway CYP and P-glycoprotein/breast cancer resistance protein [P-gp/BCRP] inhibitor), clarithromycin (CYP3A4 inhibitor), and midazolam (CYP3A4 substrate) were investigated.



<sup>\*</sup> Correspondence: corina.becker@bayer.com

Full list of author information is available at the end of the article



<sup>†</sup> Contributed equally

<sup>&</sup>lt;sup>1</sup>Clinical Pharmacology, Bayer HealthCare Pharmaceuticals, Wuppertal, Germany

#### **Methods**

Three open-label, randomized, crossover studies were performed in healthy males. In the first study, subjects received riociguat 0.5 mg  $\pm$  ketoconazole (4-day pretreatment with once-daily [od] ketoconazole 400 mg, then riociguat + 1 dose of ketoconazole 400 mg) (n = 16). In the second study, subjects received riociguat 1 mg  $\pm$  clarithromycin (4-day pretreatment with twice-daily clarithromycin 500 mg, then riociguat + 1 dose of

clarithromycin 500 mg) (n = 14). In the third study, subjects received three-times daily (tid) riociguat 2.5 mg for 3 days, then 1 day of riociguat 2.5 mg tid  $\pm$  midazolam 7.5 mg (n = 24). Pharmacokinetic parameters, safety, and tolerability were assessed.

#### **Results**

Pre- and co-treatment with ketoconazole increased riociguat mean AUC by 150% and mean  $C_{max}$  by 46% (Figure 1;

Table 1 The effects of ketoconazole and clarithromycin on riociguat pharmacokinetics (geometric means and coefficients of variation)

|                      | Riociguat/ketoconazole study |      |                                        |      | Riociguat/clarithromycin study |      |                                        |      |
|----------------------|------------------------------|------|----------------------------------------|------|--------------------------------|------|----------------------------------------|------|
| Parameter            | Riociguat 0.5 mg (n=16)      |      | Riociguat 0.5 mg + ketoconazole (n=16) |      | Riociguat 1 mg (n=14)          |      | Riociguat 1 mg + clarithromycin (n=14) |      |
|                      | GM                           | %CV  | GM                                     | %CV  | GM                             | %CV  | GM                                     | %CV  |
| AUC (μg·h/L)         | 81.9                         | 78.6 | 204.9                                  | 44.9 | 171.1                          | 97.0 | 240.0                                  | 88.9 |
| $C_{max}$ (µg/L)     | 9.4                          | 29.9 | 13.7                                   | 19.3 | 20.8                           | 37.7 | 21.6                                   | 33.9 |
| t <sub>1/2</sub> (h) | 7.3                          | 78.5 | 9.2                                    | 57.1 | 6.4                            | 77.1 | 7.9                                    | 54.6 |
| CL/f (L/h)           | 6.1                          | 78.6 | 2.4                                    | 44.9 | 5.8                            | 97.0 | 4.2                                    | 88.9 |

AUC, area under plasma concentration–time curve; CL/f, total riociguat clearance from plasma;  $C_{max}$ , maximum riociguat plasma concentration; CV, coefficient of variation; GM, geometric mean;  $t_{1/2}$ , elimination half-life.

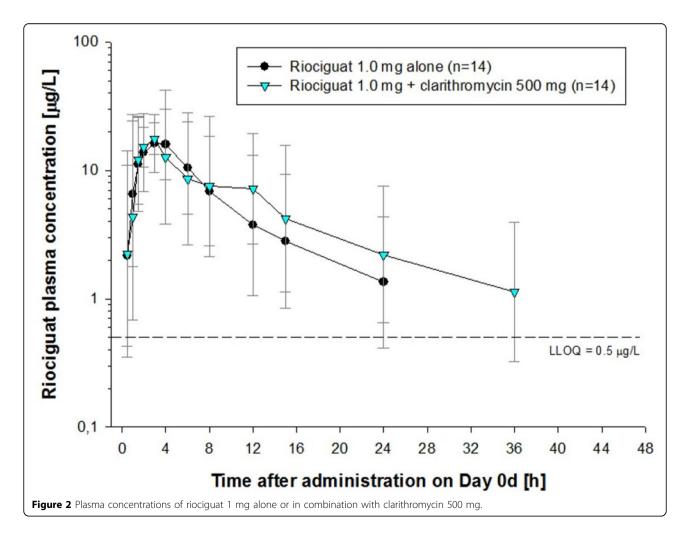



Table 1). Pre- and co-treatment with clarithromycin increased riociguat AUC by 41% without significantly increasing  $C_{\rm max}$  (Figure 2; Table 1). Riociguat pre- and cotreatment did not significantly alter the AUC or  $C_{\rm max}$  of midazolam (Figure 3; Table 2). In the ketoconazole study, adverse events (AEs) were reported in 4 (25%), 6 (38%), and 5 (31%) subjects treated with riociguat alone, riociguat + ketoconazole, and ketoconazole alone, respectively. In the clarithromycin study, AEs were reported in 4 (29%), 9 (64%), and 9 (64%) subjects treated with riociguat alone, riociguat + clarithromycin, and clarithromycin alone, respectively. In the midazolam study, AEs were reported in

20 (87%), 11 (48%), and 6 (27%) subjects treated with riociguat alone, riociguat + midazolam, and midazolam alone, respectively. The most common AEs with riociguat ± ketoconazole, clarithromycin, and midazolam across the three studies were headache and dyspepsia. One serious AE was reported in the midazolam study (elevated creatine phosphokinase; not drug-related).

#### Conclusions

The combined use of riociguat with multi-pathway inhibitors such as anti-mycotics (eg ketoconazole) or HIV protease inhibitors should be avoided due to the

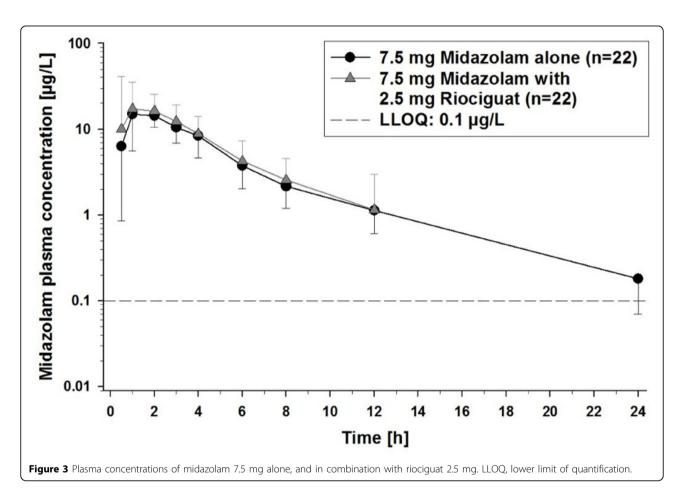



Table 2 The effects of riociguat on midazolam pharmacokinetics (geometric means and coefficients of variation)

| Midazolam/riociguat study |          |          |                                     |      |  |  |  |  |
|---------------------------|----------|----------|-------------------------------------|------|--|--|--|--|
|                           | Midazola | m (n=22) | Midazolam + riociguat 2.5 mg (n=22) |      |  |  |  |  |
| Parameter                 | GM       | %CV      | GM                                  | %CV  |  |  |  |  |
| AUC (μg·h/L)              | 91.1     | 34.3     | 98.2                                | 37.0 |  |  |  |  |
| C <sub>max</sub> (µg/L)   | 29.0     | 45.1     | 29.5                                | 41.5 |  |  |  |  |
| $t_{1/2}$ (h)             | 4.5      | 35.9     | 4.3                                 | 34.9 |  |  |  |  |

AUC, area under plasma concentration–time curve;  $C_{max}$ , maximum riociguat plasma concentration; CV, coefficient of variation; GM, geometric mean;  $t_{1/2}$ , elimination half-life.

expected increase in riociguat exposure. General dose adaptation for patients with co-medication inhibiting the CYP3A4 pathway or the P-gp/BCRP-mediated excretion of riociguat, beyond the dose titration concept for riociguat, is not deemed necessary. Riociguat ± ketoconazole, clarithromycin, or midazolam was generally well tolerated.

#### Acknowledgements

The studies were funded by Bayer HealthCare Pharmaceuticals, Wuppertal, Germany. Medical writing assistance was provided by Adelphi Communications Ltd, Bollington, UK and funded by Bayer HealthCare Pharmaceuticals.

#### Authors' details

<sup>1</sup>Clinical Pharmacology, Bayer HealthCare Pharmaceuticals, Wuppertal, Germany. <sup>2</sup>Global Biostatistics, Bayer HealthCare Pharmaceuticals, Wuppertal, Germany. <sup>3</sup>ClinPharmCologne, MEDA Manufacturing GmbH, Cologne, Germany.

Published: 29 August 2013

doi:10.1186/2050-6511-14-S1-P5

Cite this article as: Becker *et al.*: Pharmacokinetic interaction of ketoconazole, clarithromycin, and midazolam with riociguat. *BMC Pharmacology and Toxicology* 2013 14(Suppl 1):P5.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

