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Background
As a central mediator of the natriuretic peptide-cGMP
signalling cascade, membrane bound type II cGMP
dependent protein kinase (PKG II) is a key regulator of
bone growth, renin secretion, and memory formation. It
represents an important drug target for treating

osteoporosis, cystic fibrosis, and memory loss [1-5]. In
spite of its crucial physiological roles and its importance
as a therapeutic target, little is known about its mechan-
isms of cyclic nucleotide selectivity and activation due to
a lack of structural information. PKG II contains an N-
terminal regulatory (R)-domain that binds a C-terminal
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Figure 1 Isotype specific cGMP selectivity mechanisms of type I and II PKGs

Campbell et al. BMC Pharmacology and Toxicology 2015, 16(Suppl 1):A15
http://www.biomedcentral.com/2050-6511/16/S1/A15

© 2015 Campbell et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:ckim@bcm.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


catalytic (C)-domain in the absence of cGMP. Binding of
cGMP to the cyclic nucleotide binding domains (CNB-A
and B) within the R-domain releases the C-domain, lead-
ing to activation. We sought to understand the cyclic
nucleotide selectivity and activation mechanisms of PKG
II by studying each CNB domain.

Methods and results
We screened and identified CNB domains of PKG II
that are suitable for our structural studies using a high
throughput Ligation Independent Cloning method. Our
affinity measurements of the resulting CNB domains
showed that CNB-B binds cGMP with a higher affinity,
providing almost 500-fold selectivity, while CNB-A only
offers 10-fold selectivity [6]. To understand the struc-
tural basis of each domain's cGMP selectivity, we solved
crystal structures of CNB-A and -B in the presence of
cyclic nucleotides. The structures revealed that only
CNB-B shows an ordered C-helix that shields the cGMP
pocket and specifically interacts with the guanine moiety
through several hydrogen bond and VWD contacts. In
contrast, CNB-A displays an open pocket without a
C-terminal helix, resulting in fewer interactions with
cGMP. Our mutation analysis demonstrated that the
polar contacts at the C-helix of CNB-B are crucial for
high cGMP selectivity and kinase activation.

Conclusion
Our structural comparison with cGMP selective PKG I
CNB-B domain shows that it lacks cGMP specific
hydrogen bonding contacts at the C-helix, which sug-
gests a distinct cGMP selectivity mechanism for PKG
II's CNB-B (Figure 1). Cyclic nucleotide compartmenta-
lization is crucial for signalling specificity and exists in
both cGMP and cAMP pathways [7-10]. Due to higher
cAMP concentrations at the cell membrane compared
to the cytosol, the higher cGMP selectivity seen in
CNB-B of PKG II might be important in preventing acti-
vation of PKG II by cAMP, and this might minimize unde-
sired cross-activation of both cyclic nucleotide signalling
pathways.
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