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Abstract

Background: Efavirenz (EFV) therapeutic response and toxicity are associated with high inter-individual variability
attributed to variation in its pharmacokinetics. Plasma concentrations below 1 μg/ml may result in virologic failure
and above 4 μg/ml, may result in central nervous system adverse effects. This study used population pharmacokinetics
modeling to explore the influence of demographic and pharmacogenetic factors including efavirenz-rifampicin
interaction on EFV pharmacokinetics, towards safer dosing of EFV.

Methods: Patients receiving an EFV-based regimen for their antiretroviral therapy and a rifampicin-containing
anti-TB regimen were recruited. EFV plasma concentrations were measured by HPLC and genomic DNA genotyped for
variants in the CYP2B6, CYP2A6 and ABCB1 genes. All patients were evaluated for central nervous system adverse effects
characterised as sleep disorders, hallucinations and headaches using the WHO ADR grading system. A pharmacokinetic
model was built in a forward and reverse procedure using nonlinear mixed effect modeling in NONMEM VI followed
by model-based simulations for optimal doses.

Results: CYP2B6*6 and *18 variant alleles, weight and sex were the most significant covariates explaining 55% of
inter-individual variability in EFV clearance. Patients with the CYP2B6*6TT genotype had a 63% decrease in EFV
clearance despite their CYP2B6*18 genotypes with females having 22% higher clearance compared to males.
There was a 21% increase in clearance for every 10 kg increase in weight. The effect of TB/HIV co-treatment
versus HIV treatment only was not statistically significant. No clinically relevant association between CYP2B6 genotypes
and CNS adverse effects was seen, but patients with CNS adverse effects had a 27% lower clearance compared to those
without. Model- based simulations indicated that all carriers of CYP2B6*6 TT genotype would be recommended a dose
reduction to 200 mg/day, while the majority of extensive metabolisers may be given 400 mg/day and still maintain
therapeutic levels.

Conclusion: This study showed that screening for CYP2B6 functional variants has a high predictability for efavirenz
plasma levels and could be used in prescribing optimal and safe EFV doses.
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Background
Treatment success with Efavirenz (EFV) requires main-
tenance of an optimal plasma concentration to ensure a
balance between adverse drug reactions (ADRs) and pos-
sible treatment failure. Steady state concentrations below
1 μg/ml in plasma have been reported to be associated
with an increased risk for virological failure and drug re-
sistance, while concentrations above 4 μg/ml have been
reported to be associated with an increased risk for the
development of central nervous system (CNS) adverse
effects, hepatic toxicity, and necessity for treatment dis-
continuation [1,2]. High rates of CNS adverse effects
characterized by hallucinations, vivid dreams and insom-
nia have been reported in more than 50% of the patients
who initiate EFV with up to a fifth of all individuals on an
EFV based regimen discontinuing the drug and switching
therapy primarily due to the unbearable neurotoxicity [3].
The current Zimbabwean guidelines for antiretroviral

therapy (ART) recommend first line therapy of EFV at a
dosage of 600 mg daily combined with two nucleoside
reverse transcriptase inhibitors [4]. Reduced EFV doses
of 200 and 400 mg daily have been shown to be effective
in patients with good virologic response [5-7]. A random-
ized, double-blind, placebo-controlled trial (Encore 1)
which was conducted in antiretroviral-naive adults showed
that a daily dose of 400 mg EFV is non-inferior to the
standard 600 mg dose and should be considered for initial
ARV treatment [8]. The co-administration of EFV with
standard anti-TB therapy that includes rifampicin, a potent
drug enzyme inducer, isoniazid, ethambutol and pyrazina-
mide is recommended for all patients with HIV/AIDS
and active TB co-infection [4]. TB is the most frequent
life-threatening opportunistic infection among people liv-
ing with HIV and a leading cause of death [9]. Zimbabwe
is ranked among high burden countries for both TB and
HIV [10].
The large inter-individual variability in EFV pharmaco-

kinetics (PK) compromises the prediction of associated
adverse effects as well as clinical outcomes. The effects
of genetics, gender and weight on the variability of EFV
PK have been explored previously [11-14]. EFV is primar-
ily metabolized to its main metabolite, 8-hydroxyefavirenz
by CYP2B6 [15] and to a lesser extent by CYP3A4 [15]
and CYP2A6 [16]. P-glycoprotein, encoded by ABCB1, is
the major efflux transporter at the blood brain barrier that
limits entry into the CNS for a large number of drugs.
There are conflicting reports in literature as to whether
EFV is a substrate for Pgp [17,18]. Genetic polymorphisms
in these drug metabolizing enzymes and transporter pro-
teins have been associated with variability in EFV PK [14].
Of all the CYP2B6 variants identified, the CYP2B6*6

haplotype (516G > T and 785A > G) is the most frequent
and functionally relevant variant across several populations
[19,20], associated with reduced EFV clearance [21,22] and
increased CNS adverse effects [23]. A less frequent poly-
morphism CYP2B6*18 (983 T >C), has also been shown to
predict plasma EFV exposure [24]. There is limited data
available on the additional functional CYP2B6 polymor-
phisms that have been suggested to affect EFV PK. Polymor-
phisms in CYP2A6, in particular CYP2A6*9b (1836G>T)
and CYP2B6*17 (5065G >A), have been associated with
variability in EFV PK [16,25]. There are conflicting reports
on the effects of common polymorphisms in the ABCB1
gene on EFV PK [13,14] with some suggesting a favorable
virologic response and CD4-cell recovery in patients
carrying the ABCB1 3435TT genotype while others
failing to replicate this association. There is also contradic-
tion on the effect of EFV-rifampicin interaction on EFV
PK with some studies showing an increased metabolism
of EFV in the presence of rifampicin [26,27], while others
report the opposite [28,29]. Some authors have suggested
that isoniazid may play a role in counteracting the indu-
cing effects of rifampicin on EFV metabolism [30]. In
contrast, pyrazinamide has been shown not to affect CYP
activities thereby not affecting EFV PK [31] and no effects
have been reported to date with ethambutol.
Identifying the sources of EFV PK variability may im-

prove therapeutic efficacy while decreasing EFV-induced
adverse effects. We recently reported a high incidence of
CNS adverse effects associated with carriage of CYP2B6*6TT
genotype and male gender in Zimbabwean HIV positive
patients on an EFV-based regimen [32]. Due to the large
inter-patient variability in EFV concentrations, in combin-
ation with a narrow therapeutic index, therapeutic drug
monitoring (TDM) has been suggested as a clinically use-
ful monitoring tool during EFV treatment [33]. An alter-
native and less costly strategy to TDM aims to use patient
specific factors (genetic, demographic) to guide dosing so
as to achieve optimal drug exposure and effect. Therefore
the aim of this study was to investigate the contribution of
demographic and pharmacogenetic factors as well as EFV-
rifampicin drug interactions on EFV PK using population
pharmacokinetic modeling in Zimbabwean patients with
HIV/AIDS and TB co-infection. Consequently, the final
covariate model was used to simulate optimal EFV doses
at various conditions. This study forms a basis for inte-
grating pharmacogenetic testing in routine clinical prac-
tice as a step in evaluating drug safety and efficacy.

Methods
Study population and sample collection
A total of 95 HIV positive patients receiving an EFV-
based ART regimen and 90 HIV/TB co-infected patients
receiving an EFV-based ART regimen and a rifampicin-
containing anti-TB therapy were recruited and enrolled
into the study. Patient recruitment took place at two
major hospitals in Zimbabwe; Wilkins and Chitungwiza
hospitals. All patients were evaluated for CNS adverse
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effects in terms of sleep disorders, hallucinations and
headaches using a score chart and classified into cases
(presence of CNS adverse effects) and controls (no CNS
adverse effects). The classification and determination of
severity of the CNS side effects was done according to
WHO guidelines [34]. Patient demographics were also
collected. Blood samples for genotyping and EFV plasma
concentration determination were collected at enrollment.
The study was approved by the local Joint Research Ethics
Committee and Medical Research Council of Zimbabwe.
A written informed consent was obtained from each study
participant.

DNA extraction and TaqMan Genotyping
Genomic DNA was isolated from peripheral blood
leukocytes using the QIAamp DNA Midi Kit (QIAGEN
GmbH.Hilden. Germany). All participants were genotyped
for CYP2B6 G516T (rs3745274), CYP2B6*18 (rs28399499),
CYP2A6*9 (rs8192726), CYP2A6*17 (rs28399454) and
ABCB1 1236C/T (rs1128503). Allelic discrimination re-
actions were performed using TaqMan genotyping as-
says (Applied Biosystems, CA, USA) on the ABI 7500
System (Applied Biosystems, Foster City, CA). The final
volume for each reaction was 25 μl, consisting of a 2x
TaqMan genotyping master mix, 20 × genotyping assay
mix and 10 ng genomic DNA. The PCR profile consisted
of an initial step at 50°C for 2 min and 50 cycles with 95°C
for 10 minutes and 92°C for 15 sec.

Efavirenz plasma concentration determination
Plasma EFV concentrations were determined 12–15 hrs
post dose by reverse phase HPLC with UV-detection as
previously described [35] with minor changes. Briefly, the
reverse-phase chromatography with column: C18 (150 x
4.6 mm, 5 μm particle size) and UV/VIS detector (DAD)
were used. Stock solutions for the calibration standards
(0.5μΜ - 60 μM) were prepared using a mixture of aceto-
nitrile (ACN) and water (dH2O) in the ratio 60:40. The
quality control (QC) samples were prepared in the same
way as the calibration standards to give final concentra-
tions of 2μΜ (Low QC), 30μΜ (Medium QC) and 50μΜ
(High QC). Felodipine was used as the internal standard
with a retention time of 6.2 minutes. The mobile phase
consisted of a mixture of solutions A and B in a 65:35
proportion. Both solutions contained glacial acetic acid,
ACN and 25 mM ammonium acetate buffer in proportions
1:900:100 and 1:100:900, respectively. Plasma proteins were
precipitated with ACN before centrifuging. Elution was
performed at 1 ml/min giving a retention time for EFV of
5.2 min as detected at UV–VIS 1, 247 nm for a total run
time of 10mins. Analysis of chromatograms was performed
on the Agilent HP1100 HPLC System and data process-
ing was done using the Chemstation Software (Agilent
Technologies, CA, USA).
Statistical analysis of the data
Descriptive analysis of the data was performed using
Genstat 8.1 to determine the means and standard devia-
tions for continuous variables and percentages for categor-
ical variables. ANOVA, linear regression and Chi-square/
Fisher tests were used to assess the relationship between
independent and dependent variables where appropriate.
The Shapiro-Wilk test was used to assess for normality
and the appropriate data transformation methods used
where necessary. All tests perfomed in this section were
carried at 95% confidence level and p < 0.05.

Population pharmacokinetic modeling
Pharmacokinetic data was analyzed using population mixed
effects non-linear regression modeling in NONMEM VI.
The estimation of typical population PK parameters, along
with their random inter-individual and inter-occasional
(IO) variability was performed using first-order conditional
estimation method with interaction (FOCE INTER) [36].
The base model was built with all covariates and tested for
significant relationships between parameters and covari-
ates. The baseline EFV PK model parameters were adopted
from a study in Zimbabwean patients by Nyakutira et al.
[37]. Clearance (CL/F) was the only parameter that was es-
timated while the first-order absorption rate constant (ka)
and volume of distribution in plasma (Vd) were fixed. A
stepwise regression method was used and the statistical
significance set at 5% (change in objective function value
(ΔOFV) > 3.84,1.degrees of freedom [d.f] ) and 1% sig-
nificance level (ΔOFV > 6.63, 1.d.f ) for the forward and
backward inclusion of covariates respectively [38]. Clin-
ical significance was set at 20%.The effect of continuous
covariates was parameterized centred on the median value
using the following equation:

PAR ¼ θP � 1 þ θcov � COV−COVmedð Þð Þ
where θP is the parameter (PAR) estimate in a typical

individual, COVmed is a median covariate value while θcov
is the fractional change in PAR with each unit change in
the covariate (COV).
For categorical covariates, such as genotype and sex,

the covariate model was expressed as a fractional change
(θcov) from the estimate for a typical value (θP) due to
the covariate (COV) using the following equation:

PAR ¼ θP � 1þ θcov � COVð Þð Þ

Monte-carlo simulations
To propose dose adjustment the PK data was simulated
in NONMEM VI on 1000 individuals using the final
model parameters mimicking EFV drug concentration on
demographic and genetic data from the 185 individuals at
different doses: 200, 300, 400, 500, 600, 700 and 800 mg



Table 1 Demographic characteristics of the study
population

N=185

Characteristics Males, n=60 Females n=125 P value

Age (years) 40.16667 (9.141) 38.336 (8.065) 0.1683

Weight (kg) 61.51667 ( 10.058) 57.92 (11.291) 0.0372

Height (m) 1.718644 (0.089) 1.607258 (0 .084) <0.001

Duration on EFV
(months)

6.941667 (9.967) 10.30456 (12.272) 0.0661

CNS Toxicity,

Yes 26 [32.91] 53 [67.09]

No 34 [32.08] 72 [67.92] 0.904

Log EFV concentration 1.382 (1.274) 1.632 ( 1.069) 0.1638

Genetic polymorphisms

CYP2B6*6 ,

GG 17 [29.82] 40 [70.18]

GT 29 [34.52] 55 [65.48]

TT 13 [33.33] 26 [66.67] 0.841

CYP2B6*18,

TT 43 [32.58] 89 [67.42]

TC 14 [29.79] 33 [70.21]

CC 3 [50.00] 3 [50.00] 0.608

CYP2A6*9,

GG 33 [30.00] 77 [70.00]

TT 8 [33.33] 16 [66.67] 0.748

CYP2A6*17,

GG 38 [31.67] 82 [68.33]

GA 3 [20.00] 12 [80.00]

AA 1 [100] 0 [0] 0.212

ABCB1236 C/T

CC 37 [32.17] 78 [67.83]

CT 5 [31.25] 11 [68.75]

TT 0 [0] 6 [100] 0.316

The distribution of study variable outcomes grouped by sex and presented as
mean and standard deviation (SD) for continuous variables and total number
and [%] for categorical variables.
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oral per day. A dose was selected that minimized the
proportion of patients outside the 1 - 4 μg/ml therapeutic
range.

Results
Descriptive statistics
A total of 185 patients; 60 males and 125 females; were
recruited into the study and used for data analysis. The
mean weight and height were significantly higher for males
than females (61.5 kg vs 57.9 kg; p=0.0372 and 1.72 m vs
1.61 m; p<0.001, respectively). There was no statistically
significant difference in occurrence of CNS toxicity and
mean EFV concentration between males and females. The
summary characteristics of the study participants are pre-
sented in Table 1.
All identified SNPs were tested for deviations from

Hardy-Weinberg Equilibrium. Analysis of the log trans-
formed EFV concentration and categorical explanatory
variables revealed significantly higher mean log EFV con-
centration for patients carrying the homozygous mutant
genotypes for CYP2B6*6, CYP2B6*18 and CYP2A6*9 com-
pared to the other genotypes (Table 2). Figure 1 shows
the mean log EFV concentration among the combined
genotypes of CYP2B6*6 and *18. Patients carrying the
homozygous mutant genotypes and at least two of the
mutant alleles showed a fourfold higher plasma EFV
concentration than those carrying the homozygous wild
type genotypes. In addition most of the patients carrying
the homozygous wild type genotypes had EFV levels that
were in the therapeutic range log10 (0 – 0.5 μg/ml), corre-
sponding to 1 - 4 μg/ml.
However, the mean log EFV concentration for patients

who experienced CNS adverse effects was comparable to
that of patients without. Analysis of the EFV concentration
against the continuous variables revealed no significant
association with age and height but there was a signifi-
cant decrease in concentration for each unit increase in
the weight (p<0.001). The association between log trans-
formed EFV concentration and categorical explanatory
variables is summarized in Table 2.

Pharmacokinetic parameter estimation
A one compartmental PK model was used to estimate the
impact of multi-covariates to the fixed parameter EFV
CL/F. The ka and V/d were fixed in the model based on
literature results. Covariates that resulted in statistically
significant decreases in the baseline PK model were poly-
morphisms CYP2B6*6, CYP2B6*18, body weight and sex
resulting in ΔOFV from 1.098 to 0.494; (p>0.001), explain-
ing up to 55% of between subject variability in clearance.
The parameter estimates for the final PK model for a daily
dose of 600 mg EFV are shown in Table 3.
The most significant covariate was CYP2B6*18 with ΔOFV

from 1.098 to 0.901 accounting for up to 18% variance in
EFV clearance. The contribution of the covariate towards
explaining between subject variability is shown in Table 4. As
a result quantification of EFV oral clearance was fixed
on CYP2B6*18. For the extensive metabolisers, CL/F was
7.01 L/h which significantly decreased to 2.26 L/h and
0.539 L/h in intermediate and poor metabolisers, re-
spectively. Carriers of the CYP2B6*6 wild type had a
93% higher CL/F (CV=24%) while the poor metabolisers,
CYP2B6*6 TT had 63% lower CL/F (CV=9%). For every
10 kg increase in weight the CL/F increased by 21%
(CV=21%). Females showed a 22% higher CL/F (CV= 67%)
compared to males. The final model adequately explained



Table 2 Association between log transformed EFV
concentration and categorical explanatory variables.

Variable Mean Log EFV concentration p-value CV

Gender 0.195 74%

Male 1.68

Female 1.46

CYP 2B6*6 0.008* 68%

GG 1.16

GT 1.55

TT 2.35

CYP 2B6*18 <0.001*** 69%

TT 1.35

TC 2.22

CC 3.01

ABCB1 1236C/T 0.841 74%

CC 1.60

CT 1.56

TT 1.30

CYP 2A6*9 0.004** 72%

GG 1.47

AA 2.21

CYP 2A6*17 0.694 74%

AA 1.92

AG 1.45

GG 1.62

CNS Toxicity 0.122 73%

Yes 1.72

No 1.43

Regimen 0.619 73%

TDF/3TC/EFV 1.434

AZT/3TC/EFV 1.510

D4T/3TC/EFV 1.655

ART Only 1.452 0.334 79%

ART + anti-TB Therapy 1.618

“*”p < 0.05, “**”p < 0.01, “***”p < 0.001; CV= coefficient of variation.
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the observed data as shown by the basic goodness-of-fit
plots for the model evaluation shown in Figure 2.
Monte-Carlo dose simulations
A reduction in EFV dose from 600 mg/dy to 400 mg/dy
for the CYP2B6 extensive metabolisers would still result
in an effective EFV exposure (1 - 4 μg/ml) for most pa-
tients. CYP2B6*6 GT carriers would require doses be-
tween 200 – 400 mg/dy depending on the CYP2B6*18
genotype, their gender and weight. All CYP2B6*6 TT
carriers irrespective of their CYP2B6*18 genotype, weight
and gender would require a reduced daily dose of 200 mg.
The proposed optimal doses obtained from the simulation
studies are summarized in Table 5.
Discussion
In the present study, the use of mixed effects modelling
enabled the assessment of potential demographic and
pharmacogenetic factors on EFV Cl. Consequently the
final PK model was used to simulate therapeutic EFV
doses associated with reduced occurrence of CNS side
effects. The CYP2B6*6 and *18 variant alleles have been
reported to show significant correlation with high EFV
concentrations, with the CYP2B6*6 allele as a main risk
factor for plasma EFV levels above 4 μg/ml [24,37]. Our
results showed that the combined CYP2B6 SNPs had a
clinically significant additive effect on reducing EFV CL
and were associated with an almost four-fold higher
EFV concentration, a finding in agreement with reports
by Wyen et al. [39] and Maimbo et al. [24]. Similar
observations were made in Caucasians, Africans and
Asians [11,23,40,41].
An earlier report by Nemaura et al. showed that weight

and gender combined with CYP2B6*6 polymorphisms can
explain 22% of variability in EFV PK [42]. This was repli-
cated in our study and we further showed that addition of
more clinically significant factors can increase the per-
centage of variability being explained. Our final model
was able to explain up to 55% of IIV. Although previous
reports have indicated that females have a lower EFV
CL compared to males [37,42], our results showed that
females had a 22% higher clearance of EFV compared
to the males. A study done in Hispanic women showed
that they had increased CYP2B6 metabolic capacity due
to some SNPs in the regulatory regions of the gene
resulting in more CYP2B6 mRNA [43]. This may also
explain our finding. There is need therefore, to determine
these SNPs before a conclusion can be made regarding
gender differences in the expression and activity of
CYP2B6.
Our results did not identify polymorphisms of CYP2A6

and ABCB1 as significant covariates in the final model.
There are currently conflicting reports in literature over
the effect of EFV interaction with rifampicin. Both EFV
and rifampicin are inducers of CYP2B6 and CYP3A4,
which can lead to drug–drug interactions and decreased
exposure of the drug. Some reports show increased metab-
olism of EFV in the presence of rifampicin consequently
lowering EFV exposure [44]. Some authors suggest that
the interaction may be modified by other anti-tubercular
agents such as isoniazid which has been shown to inhibit
many CYP P450 enzymes including CYP3A thereby coun-
ter balancing the inducing effect of rifampicin [30]. Our
present results revealed no statistically significant differ-
ence in EFV concentration for patients on HIV treatment



Figure 1 Log EFV concentration among the CYP2B6*6 and *18 composite genotypes.
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only and for those on HIV/TB co-treatment containing
rifampicin.
Another observation from our study is that an increase

in body weight after the time of initial measurement re-
sults in a decrease in EFV concentration, which agrees
with a study in Thais which showed that body weight
was an independent predictive factor for plasma EFV
concentration [45,46], although some previous studies
have not demonstrated this effect [29,47]. Since patients’
body weights may increase over time while on treatment,
a weight-based cutoff for EFV dosing is a practical
Table 3 Parameter estimates for the final
pharmacokinetic model for daily 600 mg EFV

Parameter Estimate (% RSE)a bIIV (%RSE)

CL/FTT (L/hr) 7.01 (10) 70.3 (7)

CL/FTC (L/hr) 2.26 (12) 70.3 (7)

C/FLCC (L/hr) 0.539 (24) 70.3 (7)

V/F (L/hr) 150 FIX

ka (hr −1) 0.18 FIX

PROP_ERR 0.12

Effect on CL/FTT, CL/FTC and CL/FCC

CYP2B6GG (%) +93.1 (24%)

CYP2B6TT (%) −63.4 (9)

CYP2B6GT (%) 0

10 kg increase body weight (%) +21.1 (21)

Females (%) +22.2 (67)
aRSE, relative standard error (how precise the model is estimating the IIV). bIIV,
inter-individual variability reported as percent coefficient of variation. CL/F, oral
clearance; CYP2B6*18 TT, extensive metabolizer; TC, Intermediate metabolizer;
CC, poor metabolizer; V/F, volume of distribution; ka, first-order absorption rate
constant; PROP_ERR, proportional error; CYP2B6 GG, extensive metabolizer; GT,
Intermediate metabolizer; TT, poor metabolizer.
therapeutic approach. To date, a body weight cutoff of
60 kg for the standard EFV dosing is recommended.
With regards the occurrence of CNS adverse effects,

our analysis did not show a clinically significant associ-
ation between the CYP2B6*6 and *18 genotypes and oc-
currence of CNS adverse effects although patients with
CNS side effects had a 27% lower EFV Cl compared to
those without. This result shows that other non-genetic
factors play a role in development of these side effects.
The occurrence and progression of symptoms for CNS
side effects after administration of EFV also pose a chal-
lenge due to the wide range in time of symptoms onset
and persistence. A report by Rodriguez-Novoa et al.
showed that carriers of the CYP2B6 516 T allele have
greater plasma EFV levels during the first 24 weeks of
ART, and they experienced frequent CNS-related side
effects during the first week of treatment [41]. Other
studies show that symptoms may emerge after weeks of
treatment and persist for several months [48]. In other
reports, patients develop tolerance of side effects despite
continued high EFV concentrations. A blinded, placebo-
controlled study by Clifford et al., showed that with
optimal use of EFV, stable or improved neurological
performance is generally achieved for patients who re-
main on treatment over more than 3 years [49]. Similar
patterns were observed in our study where patients de-
veloped symptoms from four weeks after EFV initiation
and in some patients symptoms persisted for up to
72 months. Given this challenge, it is difficult to optimize
a sampling window period for CNS side effects which
may result in failure to associate their occurrence with
the CYP2B6*6 and *18 genotypes. It is therefore cru-
cial to replicate findings of the phenotype-genotype
association study in a well controlled clinical study with



Table 4 Table showing contribution of each covariate on improving the model fit and percentage of inter-individual
variability on EFV clearance accounted for

Covariate Points decrease in OFVa DFb p-value IIV explained (%)c

CYP2B6*18 67.07 2 <0.0001 18.0

CYP2B6*6 36.03 2 <0.0001 16.4

Body weight 19.37 1 <0.0001 10.7

Sex 10.41 1 0.0013 9.9

Age 0.29000 1 0.590220 0.01

EFV-RIF interactiond 1.93200 1 0.164540 1.1

CNS effect 1.01100 1 0.314660 0.14

CYP2A6*9 3.83600 1 0.050163 2.7

CYP 2A6*17 1.44 2 0.230140 1.8
aChange in NONMEM objective function value. bDegrees of freedom. cInter- individual variability. dInteraction between efavirenz and rifampicin.

Figure 2 Basic goodness of fit plots for the final EFV PK model. The observations are plotted versus the population predictions. Upper right
panel: The observations are plotted against the individual predictions. Lower left panel: The individually weighted residuals are plotted versus
time after dose. Lower right panel: The absolute values of the individually weighted residuals are seen versus the individual predictions. The
predictions match the observations and the residuals are distributed evenly around the reference line over time and do not give a pronounced
slope over the predicted concentration range.
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Table 5 Proposed optimal doses given CYP2B6
genotypes, weight and gender

Variable Females Males

<58 kg >58 kg <58 kg >58 kg

CYP2B6*18 CYP2B6*6 1 -4 μg/ml 1 -4 μg/ml 1 -4 μg/ml 1 -4 μg/ml

TT GG 400 400 400 400

TT GT 200 200 200 200

TT TT 200 200 200 200

TC GG 400 400 400 400

TC GT 400 200 200 200

TC TT 200 200 200 200

CC GG 400 600 600 600

CC GT 200 300 300 300

CC TT 200 200 200 200
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sensitive screening tests for detection of the CNS side
effects.
In order to minimize the occurrence of CNS side effects,

a gradual reduction in the dose of efavirenz from 600 to
400 or 200 mg/day for intermediate and poor metabol-
iser patient groups, respectively, have been proposed
[50]. Earlier studies have recommended increasing the
EFV dosage to 800 mg/day in patients receiving EFV
and rifampicin concomitantly [51] but later studies have
demonstrated the efficacy of the recommended 600 mg/
day. Recently some studies have suggested that the dosage
be increased to 800 mg/day in patients weighing >50 kg
[52]. Our simulation results show that reductions in EFV
dose from 600 mg/day to 400 mg/day would still maintain
the therapeutic range of the drug for most of the extensive
metaboliser patient groups. This is in agreement with
an earlier modeling study on the effectiveness of 400-mg
efavirenz vs a 600 mg dose [8]. Daily doses of between
200–400 mg may be recommended for the poor metabol-
iser patient group but there is still need to closely monitor
these patients to avoid sub-therapeutic concentrations
leading to virologic failure.

Conclusion
CYP2B6*6 and *18 polymorphisms, gender and weight
are predictors of EFV PK variability, and can explain
up to 55% of the inter-individual variability. Our find-
ings form a basis to start addressing EFV efficacy and
safety in our population through carefully planned clinical
trials to validate these predictive factors. There is need
for a thorough investigation on the EFV-rifampicin inter-
action by also including the polymorphisms in the N-
acetyltransferase 2 (NAT2) and their implications on
isoniazid metabolism. Perhaps inclusion of more factors,
genetic and non-genetic may help to explain the remaining
45% of inter individual variability. Close follow up and
regular TDM of plasma EFV concentrations during early
therapy is recommended, especially in patients with the
underlying risk factors for early diagnosis and management
of efavirenz-based ART induced CNS adverse effects.
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