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Cationic liposomes induce cytotoxicity in
HepG2 via regulation of lipid metabolism
based on whole-transcriptome sequencing
analysis
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Abstract

Backgroud: Cationic liposomes (CLs) can be used as non-viral vectors in gene transfer and drug delivery. However,
the underlying molecular mechanism of its cytotoxicity has not been well elucidated yet.

Methods: We herein report a systems biology approach based on whole-transcriptome sequencing coupled with
computational method to identify the predominant genes and pathways involved in the cytotoxicity of CLs in HepG2
cell line.

Results: Firstly, we validated the concentration-dependent cytotoxicity of CLs with an IC50 of 120 μg/ml in HepG2
exposed for 24 h. Subsequently, we used whole-transcriptome sequencing to identify 220 (77 up- and 143 down-
regulated) differentially expressed genes (DEGs). Gene ontology (GO) and pathway analysis showed that these DEGs
were mainly related to cholesterol, steroid, lipid biosynthetic and metabolic processes. Additionally, “key regulatory”
genes were identified using gene act, pathway act and co-expression network analysis, and expression levels of 11
interested altered genes were confirmed by quantitative real time PCR. Interestingly, no cell cycle arrest was observed
through flow cytometry.

Conclusions: These data are expected to provide deep insights into the molecular mechanism of CLs cytotoxicity.
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Background
Gene therapy is a promising approach for the prevention
and treatment of severe human diseases such as cancer
and AIDs. One of the major obstacles to the clinical suc-
cess of gene therapy is the lack of effective gene transfer
vectors. Offering numerous advantages for gene trans-
fection and drug delivery, nanomaterials are considered
as promising diagnostic and therapeutic candidates in
medicine [1]. Synthetic vectors, though generally not as
efficient as viral vectors, have the potential advantages of
being non-immunogenic, versatile and easier to produce.

Moreover, synthetic vectors such as cationic liposomes
(CLs) can protect drugs from being degraded in the
body before they reach their target, and allow for better
control over the timing and distribution of drugs to
tumor tissue [2]. For example, CLs have a high affinity
to the endothelial cells of tumor blood vessels, thus
allowing for selective targeting and delivery of paclitaxel
to the tumor microenvironment [3]. To date, liposomes
have been the most used nanovectors for drug delivery,
of which liposomal doxorubicin and amphotericin B re-
ceived accelerated approval as early as 1995 [4] followed
by liposomal daunorubicin in 1996 [5]. More liposomes
are currently undergoing advanced clinical trials [6].
Additionally, CLs have also been verified to protect
siRNA from RNase degradation efficiently [7]. With
more CLs put into clinical use, their cytotoxicity has be-
come a vital concern. CLs present the unique properties
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of nanoparticles, such as surface and interface effect,
small size effect, and quantum size effect, which lead to
their specific distribution and accumulation in organs
and tissues in vivo. Moreover, due to high concentra-
tions of negatively charged plasma proteins including
glycosaminoglycan, glycoprotein and apolipoproteins,
CLs could aggregate into micelles and cause cytotoxicity
[8]. In a word, CLs may exert their effect on cell func-
tion through various ways.
The liver is considered to be the main organ of meta-

bolic clearance for most drugs and xenobiotics. Previous
studies have shown that nanoparticles are preferentially
deposited in the liver under systemic exposure, resulting
in prolonged retention within the organ and some in-
stances that are significantly hepatoxic [9, 10]. Thera-
peutic or toxicological studies showed that when
nanoparticles doses overwhelmed the hepatic biodegrad-
ation capacity, the excess would accumulate in the organ
over a long period of time [11]. In this study, we chose
human liver-derived hepatoma cells (HepG2) to carry
out our research. Additionally, HepG2 cells have been
used for studying delivery and cytotoxicity of CLs [12, 13].
It was reported that oxidative stress, autophagy, and

certain physicochemical properties could induce cyto-
toxicity of nanoparticles. High reactive oxygen species
(ROS) induced by nanoparticles may damage cells by
peroxidizing lipids, disrupting DNA [14, 15], interfering
with signaling functions, and modulating gene transcrip-
tion [16]. Other studies demonstrated that inhibition of
autophagy reversed cell death caused by cationic
PAMAM dendrimers, indicating the cytotoxic role of
autophagy [17, 18]. It was reported that some nanoparti-
cles caused the unfolding of fibrinogen [19] and eleva-
tion of proinflammatory cytokines [20]. However, the
CLs biological activities are complicated and mechanism
of CLs cytotoxicity remains ambiguous.
Additionally, there were few studies to identify key

genes and pathways involved in cytotoxicity of CLs.
Spurred on by the development of deep sequencing
technology, we are allowed to investigate the mecha-
nisms of CLs cytotoxicity at the whole-transcriptome
level. In the present study, we used high-throughput
RNA-seq technology to explore the potential mechan-
ism underlying CLs cytotoxicity at
whole-transcriptome level by analyzing changes in the
global gene expression profile in HepG2 cells after
CLs exposure for the first time. The purpose of this
study is to obtain transcriptome information of
HepG2 cells exposed to CLs and preliminarily investi-
gate molecular mechanism regarding the relationship
between levels of genes expression and cytotoxicity of
CLs. In this study, differentially expressed genes
(DEGs), related gene ontology (GO) and pathways
were determined. Subsequently, gene act, pathway act

and co-expression network were constructed to fur-
ther explore the role of the related genes and
pathways.

Methods
Preparation of CLs
CLs were prepared by using the thin-film dispersion
method as described previously with minor modification
[21]. Briefly, 27.97 mg 1,2-dioleoyl-3-trimethylammo-
nium-propane (DOTAP) (Avanti Polar Lipids, 890890P,
USA), 11 mg cholesterol (Sigma-Aldrich, C8667, USA)
and 10.48 mg DSPE-mPEG 2000 (Avanti Polar Lipids,
880120P, USA) in chloroform solutions were mixed in a
round-bottomed flask for 45 min-1 h to form dry film.
Then the lipid film was rehydrated with 10 ml 10 mM
phosphate-buffered saline (PBS, PH 7.4) using a rotary
evaporator (Senco, China, Shanghai). After the liposome
film hydration in PBS, the liposome dispersion was
ultrasonicated for 10 min. Subsequently, CLs were
downsized by a high-pressure hand-held extrusion
through 400 nm, 200 nm, and 100 nm polycarbonate
and polyester membranes (Whatman, UK) at 65 °C using
a liposome extruder LF-1 (Avestin, Canada). The ob-
tained CLs in PBS were stored as stock solution at 4 °C.

Dynamic light scattering (DLS)
Mean diameter, polydispersity index (PDI), and
zeta-potential of CLs were performed by using Malvern
Zetasizer ZS90 (Malvern instruments Ltd., UK) accord-
ing to the standard operation protocol. CLs were diluted
1:10 in Milli-QH2O, and all the operations were detected
after room temperature balance for 10 min. Each assay
was performed in three replications.

Cell viability assay
HepG2 cells (American Type Culture Collection,
HB-8065) were cultured in Dulbecco’s Modified Eagle
Medium (DMEM, Invitrogen) containing 10% fetal bo-
vine serum (FBS, Hyclone), 100 U/ml penicillin and
100 μg/ml streptomycin (Corning, USA) and maintained
at 37 °C in a humidified 5% carbon dioxide (CO2) at-
mosphere. Cell viability was assessed by the Cell Count-
ing Kit-8 (CCK-8) kit (Dojindo, Japan) according to the
instruction. 100 μg/ml ZnO nanoparticles (IBU-tec,
Germany) were used as a positive control. Briefly,
HepG2 cells were seeded in 96-well plate at a density of
3000/well and incubated for 24 h. The cells were then
exposed to a series of concentrations of CLs (25, 50,
100, 200, 400, 800, 1600, 3200 μg/ml) for another 24 h.
Added 10 μl of the CCK-8 solution to each well of the
plate, incubated the plate for 2 h in the incubator, and
measured the absorbance the 450 nm using a microplate
reader (Thermo Scientific Multiskan MK3). The data
was normalized to the blank, and six independent
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experiments were conducted. Half-maximum inhibitory
concentration (IC50) value of CLs was determined by
GraphPad Prism 5.

RNA extraction and RNA-sequencing (RNA-seq)
Total RNA was extracted using Trizol Reagent (Invitro-
gen, USA) according to the manufacturer’s instruction.
RNA quantity and RNA integrity number (RIN) were
assessed by Agilent 2200 bioanalyzer. Sample RNA with
the RIN value below 6.4 was discarded [22]. The com-
plementary DNA (cDNA) libraries for single-end se-
quencing were prepared using Ion Total RNA-seq Kit
v2.0 (Life technologies, USA) according to the protocol
provided by the manufacturer.

Filtering raw reads and mapping statistics
We applied Fast-QC (http://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/) software to assess the quality
of data, including the distribution of the base quality
value, content of GC, proportion of PCR duplication,
and frequency of kmers. MapSplice v2.1.8 software was
used for RNA-seq read mapping analysis, whose core
program is Bowtie. It has been approved a highly accur-
ate algorithm for the alignment of RNA-seq reads to
splice junctions [23]. We calculated the mapping rate for
filtered clean reads and the distribution of genes on
chromosomes.

Identification of differentially expressed genes (DEGs)
To quantify the expression levels of the transcripts, the
RNA-seq data normalization was carried out to obtain
an RPKM value [24]. We applied EBSeq to filter the
DEGs. After the statistical analysis, we screened the
DEGs by the following criteria: fold change>1.50 or fold
change<0.67, FDR<0.05.

Functional analysis of DEGs
Gene ontology (GO) analysis
The enriched biological processes were identified using
Fisher’s exact test and χ2 test, and the false discovery
rate (FDR) was calculated to correct the P-value. Within
the significant category, the enrichment Re was given by
Re = (nf/n)/(Nf/N), where nf is the number of DEGs
within the particular category, n is the total number of
genes with the same category, Nf is the number of DEGs,
and N is the total number of genes. Only categories that
had a significance of P-value< 0.05 and FDR<0.05 were
reported. GO terms were organized as a directed acyclic
graph (DAG), and we performed GO tree analysis to in-
vestigate the internal relationship between the enriched
GO terms.

Pathway analysis
Fisher’s exact test and χ2 test were used to identify the
significantly enriched pathways of the DEGs, and the
threshold of significance was defined by P-value and
FDR [25]. Pathway categories with P-value<0.05 and
FDR<0.05 were reported.

Network analysis of DEGs
Network analysis was performed to trace the interac-
tions among DEGs (p-value<0.01). Gene interaction and
co-expression networks were constructed, and Cytos-
cape was used for graphical representation [26]. The
gene interaction network was built using KEGG path-
ways as a background network, which provided informa-
tion about the relationship among the genes, proteins
and compounds [27, 28].
The co-expression network was built according to the

normalized signal intensity of their expression levels. For
each pair of genes, we calculated the Pearson’s correl-
ation and chose the significant correlation pairs to con-
struct the network [29]. Degree centrality and K-core
were two widely used topological importance indicators
[30, 31]. In our analysis, “key regulatory” genes were de-
termined by the degree and k-core differences between
control and CLs-treated groups.

Quantitative real-time reverse transcription-PCR (qRT-PCR)
assay
A 2-step method for qRT-PCR was used to determine
mRNA expression level. Briefly, cDNA was synthesized
using oligo (dT) primers with PrimeScript™ II 1st strand
cDNA synthesis Kit (Takara Biotechnology, China) ac-
cording to the manufacturer’s protocol. qRT-PCR was
performed using Applied Biosystems StepOne™
Real-Time PCR System (Applied Biosystems, USA) and
SYBR Premix Ex Taq™ (Tli RNaseH Plus) kit (Takara
Biotechnology, China). The primers of these detected
genes were shown in Table 5 and primers for endogen-
ous reference gene GAPDH applied a commercial prod-
uct (Sangon Biotech, China). The expression levels were
measured in terms of the cycle threshold (Ct) and were
normalized to GAPDH expression using the 2-△△Ct

method [32].

Cell cycle analysis
Cell cycle was analyzed using flow cytometry (FCM).
The concentration of 120 μM and exposure of 24 h was
applied in CLs-treated group and 25 μM resveratrol was
adopted as a positive control group. HepG2 cells were
harvested, washed once in PBS, and then fixed in 75%
pre-cold ethanol for 6 h at 4 °C. Staining for DNA con-
tent was performed with 50 μg/ml propidium iodide (PI)
and 1 mg/ml RNase (BD Biosciences, USA) for 15 min
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at room temperature. Stained cells were analyzed by cell
cycle distribution on MACS Quant Analyzer (Germany).

Results
Synthesis, characterization and concentration-dependent
cytotoxicity of CLs
CLs were successfully synthesized using the thin-film
dispersion method. Subsequently, CLs were character-
ized using DLS to determine their mean diameter and
size distribution. All the data represented the mean of
three independent experiments. DLS revealed that their
mean diameter size was 158 nm and they were well-dis-
tributed (PDI = 0.13). The zeta potential of CLs was +
22.1 mV.
In CCK-8 test, morphological alteration was observed

under the microscope. Then, the concentration-dependency
of cytotoxicity was investigated with an IC50 of 120 μg/
ml via a cell viability assay, as shown in Fig. 1. It showed
14% inhibition of cell viability and no obvious cytotox-
icity at the concentration of 25 μg/ml. However, at the
highest concentration (3200 μg/ml), the inhibition in-
creased to approximately 90% after 24 h of CLs expos-
ure, suggesting that the high dose of CLs showed
significant cell toxicity. In summary, CLs could induce
obvious morphological alteration and significant cell
viability reduction in HepG2 cells, which indicated the
cytotoxic effect of CLs.

DEGs identification between control and CLs-treated
groups
RNA-seq was employed to investigate the potential
mechanism of cytotoxicity of CLs. The concentrations of
6 extracted RNAs were between 0.65–1.22 mg/ml and
they had an average RIN value of 8.0 ± 0.6 (average ±
standard error). The RNA sequencing generated ap-
proximately 12 gigabases (Gb) of raw data that were
uploaded in NCBI with GEO accession number
GSE89701. The filtered data set comprised approxi-
mately 15 million total reads that were distributed al-
most evenly between the six samples (Table 1), yielding
a high sequencing depth (14.71–19.16 million raw data
reads per sample). The average GC content was approxi-
mately 51% for each sample. Approximately 13.60 ± 1.17
million reads (83.4–87.3%) were mapped to the human
genome sequence in the 6 independent samples and
13.00 ± 1.08 million reads were uniquely aligned to the
human genome. The RNA-seq data normalization was
carried out to determine the RPKM value [24].
To characterize the gene expression changes induced

by CLs, the EBSeq algorithm was conducted and the cri-
teria of screening DEGs was as follows: fold change>1.50
or fold change<0.67, FDR<0.05. There were 77 genes
up-regulated and 143 genes down-regulated (Fig. 2a).
Some of the DEGs were involved in primary and second-
ary metabolism including PLA2G3, SLC27A6, HOGA1,
TM7SF2, DHCR7, LSS, SRD5A3, AKR1C4 and PDK4
and 6 among these were involved in the lipid metabolic
process. Besides, there were 4 DEGs including NFKBIZ,
DRAM1, DAPK1 and HMOX, respectively involved in
inflammatory, autophagy, cell death, and antioxidant re-
sponse (Table 2).

GO and pathway analysis
Of these DEGs, 61 up- and 88 down-regulated, respect-
ively, could be annotated with gene ontology categories.
GO analysis indicated that 10 GO terms were enriched
(P < 0.05, FDR < 0.05). DEGs were mainly involved in
multiple metabolic biological processes, including ster-
oid metabolic process, cholesterol biosynthetic process,
cholesterol metabolic process, steroid biosynthetic
process, small molecule metabolic process, sterol biosyn-
thetic process, and lipid metabolic process (Fig. 2b).

Fig. 1 HepG2 cytotoxicity of CLs at a series of concentrations
(exposure for 24 h)

Table 1 Mapping statistics, reads distribution and quantification of RNA-seq

Sample ID Raw reads (million) Unmapped reads (million) Mapped reads (million) Mapped ratio (%) Uniquely mapped ratio (%)

Control-1 15.20 1.94 13.26 87.2 83.5

Control-2 15.25 2.09 13.16 86.3 82.7

Control-3 15.15 1.93 13.23 87.3 83.5

CLs-1 19.16 3.18 15.98 83.4 79.2

CLs-2 15.11 1.98 13.13 86.9 83.0

CLs-3 14.72 1.87 12.85 87.3 83.5
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Notably, the GO category for “steroid metabolic process”
encompassing 15 genes (p<10− 12) was the most strongly
changed category, and Hydroxy-delta-5-steroid
dehydrogenase gene HSD3B2, Corticosteroid
11-beta-dehydrogenase isozyme 1 gene HSD11B1 and
Steroidogenic acute regulatory protein gene STAR were

among the most affected genes in this category. Among
the 149 DEGs, there were 34 genes participating in the
small molecule metabolic process (Table 3). In addition
to the above categories, we found other GO terms are
also involved in response to hydrogen peroxide, cyto-
skeleton organization and positive regulation of

Fig. 2 a Expression profile heat map of DEGs in HepG2 cells following exposure to CLs. A total of 77 up-regulated and 143 down-regulated
genes are shown. b GO analysis of DEGs. c GO tree analysis of enriched GO terms. Red circles represent up-regulated genes; Green circles
represent down-regulated genes; Yellow circles represent ambiguous-regulated genes
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angiogenesis (Fig. 2b). GO tree can help us to make cer-
tain the relationship of the enriched GO terms. As
shown in Fig. 2c, the biosynthetic process of cholesterol
and steroid is in the term of their metabolic process, re-
spectively. In addition, the term “cholesterol biosynthetic
process” is in the term “steroid biosynthetic process”

which is included in the most significant category “ster-
oid metabolic process” and all the above are in the cat-
egory “lipid metabolic process”. Down-regulation of
genes mainly occurs under the GO terms of cholesterol
biosynthetic process, cholesterol metabolic process,
sterol biosynthetic process, steroid biosynthetic process,

Table 2 Gene regulated by cationic liposomes in the HepG2 cell

Gene
ID

Gene
Symbol

Description Log2FC FDR

50,487 PLA2G3 Group 3 secretory phospholipase A2 −3.02 2.88E-
02

28,965 SLC27A6 cDNA, FLJ94000, highly similar to Homo sapiens solute carrier family 27
(fatty acid transporter), member 6 (SLC27A6), mRNA

−1.47 7.5E-03

112,817 HOGA1 4-hydroxy-2-oxoglutarate aldolase, mitochondrial −1.23 3.6E-03

1612 DAPK1 Death-associated protein kinase beta −1.20 0

64,332 NFKBIZ NF-kappa-B inhibitor zeta −1.04 1E-05

7108 TM7SF2 Transmembrane 7 superfamily member 2, isoform CRA_a −0.95 9.9E-03

1717 DHCR7 7-dehydrocholesterol reductase, isoform CRA_a −0.82 5.18E-
11

4047 LSS cDNA, FLJ92849, highly similar to Homo sapiens lanosterol synthase
(2,3-oxidosqualene-lanosterolcyclase) (LSS), mRNA

−0.66 1.59E-
05

55,332 DRAM1 DNA damage-regulated autophagy modulator protein 1 −0.60 4.44E-
02

79,644 SRD5A3 Polyprenolreductase 0.75 2.75E-
04

1109 AKR1C4 Aldo-ketoreductase family 1 member C4 1.00 6.59E-
07

3162 HMOX1 Heme oxygenase 1 1.21 3.12E-
03

5166 PDK4 Pyruvate dehydrogenase kinase, isoenzyme 4 2.54 0

Table 3 Gene Ontology (GO) categories of differentially expressed genes (DEGs)

GO ID Term Total Significant Genes P-value

GO:
0008202

steroid metabolic
process

122 15 INSIG1, DHCR7, AKR1C4, SRD5A3, PCSK9, MVD, APOA1, LDLR, MVK, HSD3B2, HSD11B1,
STAR, TM7SF2, LSS, SULT1A3

6.79E-
12

GO:
0006695

cholesterol
biosynthetic process

34 7 INSIG1, DHCR7, MVD, APOA1, MVK, TM7SF2, LSS 1.08E-
07

GO:
0008203

cholesterol metabolic
process

89 9 INSIG1, DHCR7, PCSK9, MVD, APOA1, LDLR, MVK, STAR, TM7SF2 4.28E-
07

GO:
0042542

response to
hydrogen peroxide

43 7 OLR1, GNAO1, HMOX1, HBA1, HBB, STAR, 4.43E-
07

GO:
0006694

steroid biosynthetic
process

60 7 DHCR7, MVD, MVK, HSD3B2, STAR, TM7SF2, LSS 3.35E-
06

GO:
0044281

small molecule
metabolic process

1410 34 ANGPTL4, PIK3C2B, ABCB1, INSIG1, FHL2, KYNU, ALDH1A1, DHCR7, HMOX1, HBA2, HBA1,
PLA2G3, GPAT3, ACSS2, AKR1C4, HBB, SRD5A3, GLUL, SLC25A20, MVD, PDK4, APOA1,
G0S2, LDLR, MVK, HSD3B2, GCLC, BGN, SLC2A3, HSD11B1, STAR, TM7SF2, LSS, SULT1A3

4.28E-
06

GO:
0016126

sterol biosynthetic
process

29 5 INSIG1, DHCR7, MVD, MVK, TM7SF2, 1.55E-
05

GO:
0006629

lipid metabolic
process

490 16 INSIG1, DHCR7, FA2H, PLA2G3, AGPAT9, SRD5A3, PCSK9, MVD, APOA1, LDLR, SLC27A6,
MVK, HSD11B1, TM7SF2, LSS, SULT1A3

3.91E-
05

GO:
0007010

cytoskeleton
organization

7 117 KRT4, NEDD9, THY1, WTIP, RHOU, KRT8, CNN2 1.80E-
04

GO:
0045766

positive regulation of
angiogenesis

6 88 ANGPTL4, ECM1, HMOX1, GREM1, GATA6, ANXA3 2.65E-
04
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and lipid metabolic process, while a majority of other
terms consist of up-regulated genes. Taken together, we
showed that CLs altered genes that were strongly corre-
lated to the lipid metabolic process.
The pathway analysis showed the DEGs were associ-

ated with steroid biosynthesis, steroid hormone biosyn-
thesis, PPAR signaling pathway, focal adhesion,
ECM-receptor interaction, ovarian steroidogenesis, Ter-
penoid backbone biosynthesis, HIF-1 signaling pathway
and glyoxylate, dicarboxylate metabolism (P < 0.05)
(Fig. 3a). Among them, 5 pathways were involved in me-
tabolism. We built the pathways act network to perform
deep analysis (Fig. 3b). It was obvious that steroid bio-
synthesis and focal adhesion followed by steroid hor-
mone biosynthesis, ECM-receptor interaction and
PI3K-Akt signal pathway were the most important

pathways involved, and these pathways were located at
the centers of each cluster and showed more interac-
tions with their surrounding pathways.

Network analysis
To illustrate the biological effect of CLs, we built the
network of DEGs using the KEGG database. An import-
ant network module including HSB11B1, AKR1C4,
SRD5A3 and HSD3B2 was identified (Fig. 3c). Interest-
ingly, these genes were all involved in the most signifi-
cant GO category steroid metabolic process.
In co-expression network analysis, “key regulatory”

factors were determined by the degree and k-core dif-
ferences between the control and CLs-treated groups.
As shown in Fig. 4 and Table 4, HSD11B1, HSD3B2,
G0S2, and CXCL5 followed STAR possessed the

Fig. 3 a Pathway analysis of DEGs. Red represents the significant pathway. b Pathway act network. c Gene act network

Fig. 4 Co-expression network of DEGs in the control (a) and CLs-treated (b) groups. Solid lines represent positive correlation, and dashed lines
represent negatively correlation. The size and color of the nodes correspond to their co-expression ability. The greater the size of the node, the
greater the number of its direct neighbors
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biggest degree differences. HSD11B1, HSD3B2, STAR,
FA2H and DHCR7 were members of steroid meta-
bolic process. G0/G1 switch gene 2 (G0S2) is an im-
portant negative regulator of the rate-limiting lipolytic
enzyme adipose triglyceride lipase-mediated lipolysis
[33]. Chemokine C-X-C motif ligand 5 (CXCL5) is
manifested to participate in the inflammatory process
for nanotoxicology [34].

qRT-PCR and cell cycle analysis
qRT-PCR was performed to validate the relative gene ex-
pression of the 11 selected genes. As shown in Fig. 5a
and b, the mRNA expression levels of 8 up-regulated
and 3 down-regulated genes measured by qRT-PCR were
almost comparable to the RNA-seq results. We analyzed

the fold change of the gene expression ratios between
RNA-seq and qRT-PCR by linear regression, the overall
correlation coefficient was 0.9808, indicating the reliabil-
ity of the RNA-seq data.
FCM analysis was applied to detect whether cell cycle

arrest was induced. Resveratrol is well known as a posi-
tive compound to trigger accumulation of cells in
S-phase of the cell cycle. As shown in Fig. 5c, no signifi-
cant differences in cell cycle progression could be ob-
served between control and CLs-treated groups.
However, resveratrol triggered retention of HepG2 cells
in S-phase, showing that these cells were not resistant to
cell cycle arrest (Fig. 5c).

Discussion
Using whole-transcriptome sequencing and computa-
tional approaches, we showed herein that CLs caused
changes in gene expression in HepG2 cells and that gene
categories related to lipid metabolism were the most sig-
nificantly affected categories. In the previous studies,
CLs were reported to interact with negatively charged
cellular components (opsonin, serum protein and en-
zyme) resulting in hemolysis, impairment of mitochon-
drial function and membrane integrity in vitro [12, 35].
In vivo, hepatotoxicity and weight loss have also been
observed in mice after systemic administration of cat-
ionic siRNA nanoparticles [36]. In our study, the cyto-
toxicity of CLs in HepG2 was studied with a CCK-8 test
after 24 h exposure. Morphological alteration under the

Table 4 Intersection of DEGs between control and CLs-treated
groups

Gene Degree K-core Dif
Degree

Dif
K-
core

control CLs-treated control CLs-treated

G0S2 0 38 0 32 38 32

HSD11B1 0 38 0 32 38 32

HSD3B2 0 38 0 32 38 32

CXCL5 0 38 0 32 38 32

STAR 6 37 4 32 31 28

FA2H 9 31 7 28 22 21

DHCR7 23 38 21 32 15 11

Fig. 5 a, b qRT-PCR verification of selected DEGs including 8 down-regulated and 3 up-regulated genes. The relative expression levels of these
genes were normalized to GAPDH. c HepG2 cell cycle analysis was performed by flow cytometry. The percent of cells in each phase of the cell
cycle was shown
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microscope and concentration-dependency of cytotox-
icity with IC50 of 120 μg/ml via a cell viability assay indi-
cated the cytotoxic effect of CLs. To more clearly and
exactly identify the changed level of DEGs, the concen-
tration of IC50 (120 μg/ml) and exposure time of 24 h
were chosen for subsequent experiments.
In the transcriptome sequencing, there were several

DEGs involved in primary and secondary metabolism.
Remarkably, 6 DEGs including PLA2G3, SLC27A6,
TM7SF2, DHCR7, LSS and SRD5A3 were involved in
the lipid metabolic process (Table 2). In addition, in the
down-regulated genes, NFKBIZ, NF-kappa-B inhibitor
zeta, is a member of the ankyrin-repeat family. The
C-terminal portion of the encoded product shares high
sequence similarity with the I kappa B family of proteins.
The latter are known to play a role in inflammatory re-
sponses. DRAM1, DNA damage regulated autophagy
modulator 1, was reported to increase autophagy flux
through promoting lysosomal acidification and protease
activation [37]. It was found that DRAM1 knockdown
inhibited autophagy flux and aggravated cell injury in
Neuro-2a cells [38]. A recent study has shown that CLs
induced cell necrosis involved in late-stage autophagic
flux inhibition [39]. DAPK1, death-associated protein
kinase 1, is an important regulator of cell death and au-
tophagy [40]. Additionally, it is a mediator of
pro-apoptotic pathways and is involved in multiple cell
death processes induced by various internal and external
apoptotic stimulants [41]. In the up-regulated genes,
HMOX1, Hemeoxygenase 1, is a gene for the antioxi-
dant response and is considered to be a marker of oxida-
tive stress. In a previous study, the expression of
HMOX1 was increased in liver tissue after 7 days of re-
peated doses of CLs in rat [42]. In summary, apart from
cellular metabolism process, the DEGs were also in-
volved in inflammatory, autophagy, cell death, and anti-
oxidant response.
In GO enriched terms, DEGs were mainly involved in

multiple metabolic biological processes, including ster-
oid metabolic process, cholesterol biosynthetic process,
cholesterol metabolic process, steroid biosynthetic
process, small molecule metabolic process, sterol biosyn-
thetic process, and lipid metabolic process (Table 3).
Moreover, to make certain the relationship of the
enriched GO terms, we constructed the GO tree graph.
The biosynthetic process of cholesterol and steroid is in
the term of their metabolic process, respectively. In
addition, the term “cholesterol biosynthetic process” is
in the term “steroid biosynthetic process” which is in-
cluded in the most significant category “steroid meta-
bolic process” and all the above are in the category “lipid
metabolic process” (Fig. 2c). At present, it is well ac-
cepted that cellular energy metabolism disturbance is
one of the most important mediators of disease

occurrence. Dysregulation of cellular energy is one of
the hallmarks of cancer, and metabolic reprogramming
is attracting increased attention in cancer research [43].
Many mechanisms for cytotoxicity of nanoparticles have
been explained but little has been reported on the en-
ergy metabolism response. A previous study has shown
that excessive exposure to certain metal nanoparticles
can cause cellular metabolic turbulence [44]. Lipid me-
tabolism is an important resource for cellular energy. In
our study, GO results revealed that cytotoxicity of CLs
mainly correlates with lipid metabolism, in addition to a
response to hydrogen peroxide and dysfunction of
angiogenesis.
In pathway analysis, 5 of the enriched 9 pathways in-

cluding steroid biosynthesis, steroid hormone biosyn-
thesis, Glyoxylate and dicarboxylate metabolism were
involved in metabolism. Additionally, the PPARs are a
group of nuclear receptors that are activated by fatty
acids and their derivatives. Each of the three distinct
subtypes is encoded by a separate gene and binds fatty
acids and eicosanoids. Their activation leads to interrup-
tion of cell metabolism, cell growth and stress response
[45]. Some reports suggested PPAR modulation by either
agonist or antagonist might be a potential treatment for
metabolic diseases [46]. Focal adhesion, transmembrane
junctions between the extracellular matrix and the cyto-
skeleton, consists of a large number of both cytoskeletal
and signal transduction (adapter) proteins and are rich
in tyrosine phosphorylated proteins [47]. In cell biology,

Table 5 Primer sequences for quantitative Real-time reverse
transcription-PCR (qRT-PCR) assay

Gene Primer sequences (5′-3′)

PLA2G3 Forward:AGAGAGGATGGACCATGCCT
Reverse:GTTCCCGGCAACAGAGATCA

SLC27A6 Forward: TCCTGTGGGCTTTTGGTTGT
Reverse: AAGTGGCACCCAACTCAACA

HOGA1 Forward: GGATCCCAGGGCTGAAGAAA
Reverse: CTGGTGAAATCCATGCGCAG

DAPK1 Forward: AAGATCAAGTGCTGCCTGCT
Reverse: GGCTGGTAGATCATGACGGG

NFKBIZ Forward: GCCCAGTTGCCTGTCTTTTG
Reverse: TTCCTCATCAACAGGCGGAC

DHCR7 Forward: CCAGGTGCTTCTGTACACGT
Reverse: ACTTGTTCACAACCCCTGCA

LSS Forward: GAGCGGCGTTATTTGCAGAG
Reverse: AGACACCGGACTCCTCTCTC

DRAM1 Forward: CATCTCTGCCGTTTCTTGCG
Reverse: AAACCAAAGGCCACTGTCCA

SRD5A3 Forward: CGAGTGCCTCTACGTCAGTG
Reverse: ATCCATTGGCACTTGGCTCA

AKR1C4 Forward: CTCTCAAGCCAGGTGAGACG
Reverse: AGTTTGACACCCCGATGGAC

PDK4 Forward: AGAGGTGGAGCATTTCTCGC
Reverse: ATGTTGGCGAGTCTCACAGG
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focal adhesions are large macromolecular assemblies
that serve as the mechanical linkages to the ECM and as
a biochemical-signaling hub to concentrate and direct
numerous signaling proteins. Activation of the PI3K/
AKT signaling pathway is implicated in the regulation of
cell proliferation, death and metastasis [48]. Pathway re-
sults indicated that down-regulation of steroid biosyn-
thesis and dysfunction of focal adhesion through PI3K/

AKT signaling may be the key biological events after
CLs exposure and the dominant elements involved in
cytotoxicity in HepG2. Combining the results of GO and
pathway analysis, we concluded that during the process
of CLs entering into the cells, HepG2 cells produced a
series of cellular responses such as a disorder of energy
metabolism, regulation of microvascular function, dys-
function of focal adhesion and response to oxidative

Fig. 6 The schematic diagram of this study. The procedure included three steps. Firstly, the cytotoxicity of cationic liposomes (CLs) was detected
in HepG2 cell and DEGs in the CLs group comparing with control were identified through next generation RNA-seq technology. Then, functional
analysis and bioinformatics computing were employed to explore the key genes and pathways. Finally, expression levels of these genes were
confirmed by qPCR, and the cell cycle was assessed by flow cytometry
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stress. Collectively, steroid biosynthesis was highly corre-
lated to cytotoxicity induced by CLs.
To explore the potential relationship between the 220

DEGs involved in CLs cytotoxicity, we constructed
co-expression networks for the control group and
CLs-treated group. The key genes HSD11B1, HSD3B2,
STAR, FA2H and DHCR7 indicated cytotoxicity of CLs
mainly related to lipid metabolism. Previous studies have
suggested that the size, shape and surface charge could
affect the therapeutic effect and cytotoxicity of nanopar-
ticles [49, 50]. Our results revealed the toxicity of CLs in
HepG2 was mainly related to lipid metabolic process,
which was possibly because of the materials of the nano-
particles. It indicates that in addition to the size and sur-
face charge, the materials of nanoparticles may play an
important role in their cytotoxicity and further studies
are needed to conclusively explain their toxicity
mechanism.
To confirm the accuracy and reproducibility of the

transcriptome analysis results, 11 genes were selected
from the list in Table 5 in our further study, and
qRT-PCR was performed to validate the relative gene ex-
pression of these genes. Of these, 8 genes were in the
following GO categories: steroid metabolic process,
cholesterol biosynthetic process, cholesterol metabolic
process, steroid biosynthetic process, and lipid metabolic
process. 2 genes including DAPK1 and DRAM1 are re-
lated to apoptosis and autophagy. NFKBIZ is a
well-known factor associated with the inflammatory
response.
Several studies have shown that cytotoxicity may in-

volve in the cell cycle, checkpoint control and DNA
damage responses [51]. To evaluate whether cell cycle
arrest was induced by CLs, the cell cycle was analyzed
using FCM after treatment with the same concentration
and exposure time via PI staining. These data suggest
that cell cycle arrest is not obviously involved in the
cytotoxicity of CLs in the HepG2 cell line, while the
positive control resveratrol triggered retention of HepG2
cells in S-phase.

Conclusions
CLs have been extensively applied for gene and drug de-
livery as a means of protecting siRNA against enzymatic
degradation, facilitating tumor cell uptake, and promot-
ing escape from the endosomal compartment, resulting
in effective cytoplasmic delivery. The increasing use of
CLs in research and medical products has aroused global
concern regarding their fate in biological systems, result-
ing in a demand for parallel risk assessment. Currently,
CLs have only modest success as a delivery vehicle for
gene therapy, primarily due to issues with toxicity. The
objective of this work was to explore the mechanism of
cytotoxicity induced by CLs. According to the previous

report [8], the toxicity of cationic liposomes (CLs) is
mainly related with their electrical property. Herein, we
employed the common used DOTAP CLs in our study.
As Fig. 6 shown, we initially successfully synthesized and
characterized CLs, and then validated their cytotoxicity
in HepG2 cells after 24 h exposure via a CCK-8 assay.
The result demonstrated a concentration-dependent
cytotoxicity with an IC50 of 120 μg/ml. Subsequently, we
presented a systems biology approach based on
next-generation whole transcriptome sequencing
coupled with computational methods, including GO en-
richment, pathway and co-expression analysis to reveal
key roles involved in cellular responses to CLs. It re-
vealed that cytotoxicity of CLs was mainly related to
cholesterol, steroid and lipid biosynthetic and metabolic
processes. qRT-PCR was performed to validate the
RNA-seq results and FCM indicated the cell cycle arrest
was not involved. Fortunately, recent studies have re-
ported that modification to CLs have enabled better,
long term transfection capability and low toxicity result
in therapeutic efficacy. Our study may provide useful
clue for further studies for preventing cytotoxicity. Col-
lectively, CLs could become a promising tool for gene
and drug delivery with low toxicity in the future.
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