

MEETING ABSTRACT

Open Access

Understanding subtype-selective allosteric modulation of GABA_A receptors

Roshan Puthenkalam, Zdravko Varagić, Pantea Mirheydari, Werner Sieghart, Margot Ernst*

From 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

Background

The γ -aminobutyric acid type A (GABA_A) receptors are the major inhibitory neurotransmitter receptors of the central nervous system. Benzodiazepine (Bz)-site ligands bind at the α/γ interface and can enhance GABA-induced Cl⁻ currents. The efficacy of certain benzodiazepines strongly depends on the type of $\alpha(1,2,3,5)$ subunits in the receptors. Functionally selective compounds for $\alpha 2/3$ can be anxiolytic without having the side effect of sedation. The molecular basis for functional selectivity is investigated in this work.

Methods

Two-electrode voltage-clamp electrophysiology recordings were performed in wild-type and mutated receptors expressed in *Xenopus laevis* oocytes. Modelling, docking and molecular dynamics simulation studies of $\alpha1\gamma2$ and $\alpha3\gamma2$ -containing receptors were performed to understand Bz-ligand interaction with the different α subunits.

Results

Electrophysiology recordings identified flumazenil as a null modulator in $\alpha 1$ and a weak plus modulator in $\alpha 3$ -containing receptors. A sequence comparison between the $\alpha 1$ and $\alpha 3$ subunit revealed the residue R228 as unique for the $\alpha 3$ subunit among all α subunits. $\alpha 3R228A$ -mutated receptors completely lost their ability to respond to flumazenil. This amino acid is part of the so-called loop C, a several-residues-spanning segment that forms part of the ligand-binding site with a highly variable sequence. The functionally $\alpha 3$ -selective ligand flumazenil was docked into the α/γ interface. The flumazenil-bound state in the $\alpha 1$ subtype has already been studied previously [1] and was used for comparison. Our results indicate that the

binding mode of flumazenil in $\alpha 1$ and $\alpha 3$ -containing receptors is very similar.

Conclusions

The models made in this study show improved properties in certain variable segments that could not be resolved in the previously published models [1]. For understanding the role of $\alpha 3R228$, more models and docking computations have to be made on the basis of these improvements to explore possible conformations.

Acknowledgements

This project is funded by FWF W1232 Molecular Drug Targets and the Medical University of Vienna.

Published: 17 September 2012

Reference

 Richter L, de Graaf C, Sieghart W, Varagic Z, Mörzinger M, de Esch IJ, Ecker GF, Ernst M: Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat Chem Biol 2012, 8:455-464.

doi:10.1186/2050-6511-13-S1-A26

Cite this article as: Puthenkalam *et al.*: Understanding subtype-selective allosteric modulation of GABA_A receptors. *BMC Pharmacology and Toxicology* 2012 **13**(Suppl 1):A26.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: margot.ernst@meduniwien.ac.at Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria

