
Enayetallah et al. BMC Pharmacology and Toxicology 2013, 14:46
http://www.biomedcentral.com/2050-6511/14/46
RESEARCH ARTICLE Open Access
Assessing the translatability of In vivo
cardiotoxicity mechanisms to In vitro models
using causal reasoning
Ahmed E Enayetallah1,2*, Dinesh Puppala1, Daniel Ziemek3, James E Fischer1, Sheila Kantesaria1

and Mathew T Pletcher1,4
Abstract

Drug-induced cardiac toxicity has been implicated in 31% of drug withdrawals in the USA. The fact that the risk for
cardiac-related adverse events goes undetected in preclinical studies for so many drugs underscores the need for
better, more predictive in vitro safety screens to be deployed early in the drug discovery process. Unfortunately,
many questions remain about the ability to accurately translate findings from simple cellular systems to the
mechanisms that drive toxicity in the complex in vivo environment. In this study, we analyzed translatability of
cardiotoxic effects for a diverse set of drugs from rodents to two different cell systems (rat heart tissue-derived cells
(H9C2) and primary rat cardiomyocytes (RCM)) based on their transcriptional response. To unravel the altered
pathway, we applied a novel computational systems biology approach, the Causal Reasoning Engine (CRE), to infer
upstream molecular events causing the observed gene expression changes. By cross-referencing the cardiotoxicity
annotations with the pathway analysis, we found evidence of mechanistic convergence towards common
molecular mechanisms regardless of the cardiotoxic phenotype. We also experimentally verified two specific
molecular hypotheses that translated well from in vivo to in vitro (Kruppel-like factor 4, KLF4 and Transforming
growth factor beta 1, TGFB1) supporting the validity of the predictions of the computational pathway analysis. In
conclusion, this work demonstrates the use of a novel systems biology approach to predict mechanisms of toxicity
such as KLF4 and TGFB1 that translate from in vivo to in vitro. We also show that more complex in vitro models
such as primary rat cardiomyocytes may not offer any advantage over simpler models such as immortalized H9C2
cells in terms of translatability to in vivo effects if we consider the right endpoints for the model. Further assessment
and validation of the generated molecular hypotheses would greatly enhance our ability to design predictive in vitro
cardiotoxicity assays.
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Background
In 2007, the leading cause for drug withdrawal from the
market was attributed to cardiotoxicity (31%) [1]. The
voluntary withdrawal of the COX-2 selective inhibitor
Rofecoxib in 2004 due to increased risk of myocardial
infarction and stroke is one of the more prominent ex-
amples [2]. Addressing the safety issues early would sig-
nificantly reduce such costly surprises in the drug
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discovery process and would also improve the survival
of pharmaceutical drugs to the market. Although using
animal models to predict late stage safety issues has been
the norm in the industry for years, there is increased ex-
pectation that progress in utilization of computational
toxicology predictive models, specialized in vitro models
and a combination of both these models will enhance
early de-risking, reduce animal use and enhance com-
pound survival. In addition, the US National Academy of
Sciences recently released a toxicity testing framework
emphasizing the utilization of high throughput in vitro
toxicity assays and computational models to assess the risk
and underlying mechanism of toxicities triggered by
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pharmaceutical chemicals and environmental contami-
nants. This is envisioned to include model systems based
on stem cell biology, functional genomics and physiologic-
ally based pharmacokinetic (PBPK) modeling [3].
There have been several reports wherein computa-

tional models have been utilized for predicting the early
safety risks based on potassium voltage-gated channel,
subfamily H (HERG) binding [4,5], Absorption, Distribu-
tion, Metabolism, Excretion and Toxicity (ADMET)
properties [6], Adenosine tri-phosphate Binding Cassette
(ABC) transporter substrates [7] and Cytochrome P450
(CYP450) inductions [8]. However, the successful utiliza-
tion of mechanism-based screening assays has been a
challenge despite the plethora of published studies on
the known mechanisms of drug-induced cardiac toxicity.
These include well studied mechanisms of cardiotoxicity
such as oxidative stress, calcium dysregulation, energy
metabolism disruption, cell cycle/proliferation and tissue
remodeling [9-11].
It is believed that a major factor contributing to the

limited success of predicting clinical outcome using pre-
clinical models or predicting in vivo outcome using
in vitro models is due to limited understanding of the
translatability across model systems and species. Hence,
the recent increase of models believed to better reflect
the physiological and functional roles of cardiomyocytes
such as progenitor cardiomyocytes, human embryonic
stem cells (ESC) and inducible pluripotent stem cell
(iPS) derived cardiomyocytes [12,13]. Recently, Force
and Kolaja reviewed the most commonly used models of
cardiomyocytes summarizing their advantages and disad-
vantages [11]. It should be noted, of course, that this
methodology will only reveal mechanisms that result
from direct action of a compound on a cardiomyocyte.
This in vitro system is inadequate for predicting second-
ary effects mediated by the interaction of multiple com-
plex organ systems, such a rise in heart rate due to
increased epinephrine release.
The primary goal of this study is to evaluate the trans-

latability of cardiotoxicity mechanisms from in vitro to
in vivo and to compare the elicited mechanisms in dif-
ferent in vitro models. To achieve this we utilized gene
expression microarray experiments from rat toxicity
studies (Drugmatrix, Iconix [14,15]) and in vitro experi-
ments in H9C2 (embryonic BD1X rat heart tissue de-
rived cells) and neonatal rat ventricular cardiomyocytes
(RCM) using nine known pharmaceutical compounds
known to induce cardiotoxicity in vivo.
The gene expression microarray data was analyzed using

a novel computational tool called the Causal Reasoning
Engine (CRE) [16,17]. CRE interrogates prior biological
knowledge to generate testable hypotheses about the mo-
lecular upstream causes of the observed gene expression
changes. Each such hypothesis summarizes (“explains”) a
certain number of gene expression changes (see KLF4+
example below). Notably, hypotheses usually make state-
ments about predicted protein abundance or activity
changes, e.g. increased or decreased TGFB1 activity. In
our experience, CRE hypotheses tend to robustly identify
biological phenomena driving gene expression changes
and provide several advantages over other gene expression
analysis methods [17]. In particular, for the purpose of this
study, CRE provided the advantage of better abstracting
biological information from gene expression data obtained
across different experimental settings (see Causal Reasoning
Convergence below).
Following the CRE analysis of all individual compound

treatments in vitro and in vivo, we compared the hypoth-
eses and the biological processes they compose to assess
the translatability of mechanisms from one model system
to the other. Subsequently, we experimentally tested KLF4
and TGFB1 activities, two of the central molecular hy-
potheses predicted by CRE, in response to the cardiotoxic
compounds used in the CRE analysis using qPCR and re-
porter assay. Finally, we discuss the implications of our
analysis and suggest potential future experiments.
Methods
Tissue culture
H9C2 cells (derived from embryonic BD1X rat heart tis-
sue) were purchased from ATCC. H9C2 cells were grown
DMEM (Gibco# 11965) with 10% FBS as per manufac-
turer’s protocol. Neonatal, ventricular Clonetics® Rat Car-
diac Myocytes (P1-3) (RCM)(Catalog # R-CM-561) were
purchased from Lonza and were grown in RCGM media
with supplements as per manufacturer’s protocol.
For ATP depletion assays, H9C2 and RCM’s cells were

plated in 96 well plates per the manufacturer’s protocol
for 24 hr prior to treatments. For gene expression exper-
iments, H9C2 and RCM cells were plated in 24 well
plates per the manufacturer’s protocol for 24 hr prior to
adding of treatments.
Chemicals
All the chemicals (Table 1) were purchased from Sigma
Aldrich. Stock solutions and working solutions were pre-
pared by dissolving compounds in DMSO.
ATP depletion assays
ATP depletion measurements were done using The
CellTiter-Glo® Luminescent Cell Viability Assay from
Promega (Catalog # G7570) per the manufacturer’s proto-
col. 100 μl per well of reconstituted ATP depletion reagent
was added directly to 96 well plate and incubated for
10 minutes on orbital shaker. Luminescence signal was
measured using Envison plate reader.



Table 1 In vitro cytotoxicity phenotype (ATP depletion) and known in vivo cardiac safety liabilities of the test compounds

Drug ATP depletion IC50
at 48 hrs (μM± SE)

In vivo 5-day
treatment (mg/kg)

Reported ECG
abnormalities
& arrhythmia

Reported structural
cardiotoxicity

Primary
pharmacology
& indication

Amiodarone 12 ± 1.17 147 Yes No Anti-arrhythmic

Amitriptyline 5.7 ± 0.67 160 Yes Yes Tricyclic antidepressant

Cyclosporine 2.71 ± 0.92 350 No Yes Immunosuppressive

Dexamethasone >300 1 No Yes Glucocorticoid

Dobutamine 22.9 ± 0.83 43 Yes Yes β1 agonist, inotropic

Doxorubicin 4.23 ± 0.52 3 Yes Yes Cytotoxic Anti-neoplastic

Loratadine 39.5 ± 2.11 2000 Yes No Anti-histaminic

Mitoxantrone 1.16 ± 0.47 2 Yes Yes Cytotoxic Anti-neoplastic

Terbutaline >300 130 Yes Yes β2 agonist
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Microarray gene expression data
RNA was extracted 24 hrs after compound treatment
using Qiagen’s RNeasy Mini kit (Catalog # 74104) per the
manufacturer’s protocol. Quality and quantity of RNA was
assessed using Nanodrop 2000c (A260/280 ratio) from
Thermo Fisher Scientific and Agilent RNA analyzer (RIN
scores). RNA (n = 2) was submitted to Genelogic for
Affymetrix Genechip profiling using Rat Expression Array
230 2.0 chip. The in vivo rat cardiac tissue gene expression
comparisons in response to the same compounds (Table 1)
used in the in vitro experiments were obtained from the
Drugmatrix toxicogenomic database [14,15]. The gene ex-
pression data for the effect of Isoprenaline on mouse car-
diac tissue was obtained from the public domain (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18801),
from a study published by Galindo et al. [18].
For quality control, RNA degradation plots were gener-

ated for each CEL file. To assess potential RNA degrada-
tion, 3′/5′ ratios and their associated confidence intervals
were evaluated [19]. Two techniques were used to distill
the probe results into a small number of representative
variables; Multidimensional scaling (MDS) [20] and Prin-
cipal component analysis (PCA). These two techniques
were applied to the data before and after Robust Multi-
Array Average (RMA) [20] signal processing. During this
processing, only the perfect match (PM) probe data were
used; the mismatch (MM) probes were not used. To assess
differential expression of genes between groups of interest,
a common statistical model was applied independently to
each probeset. Gene expression for all sample types was
analyzed on the log2 scale. Linear models were used to
calculate t-statistics, which were subsequently adjusted
using the moderated t-statistic procedure [21]. The
Benjamini and Hochberg adjustment procedure [22] based
on controlling the False Discovery Rate (FDR) was used.

Causal reasoning engine algorithm
Gene expression changes are analyzed to detect potential
upstream regulators as previously described [16,17].
Briefly, the approach relies on a large collection of cu-
rated biological statements in the form:
A [increases or decreases] B, where A and B are mea-

surable biological entities.
The biological entities can be of different types (e.g.

phosphorylated proteins, transcript levels, biological
process and compound exposure) and each statement is
tied to accessible, peer-reviewed articles. For this work, we
licensed approximately 450,000 causal statements from
commercial sources (Ingenuity Systems and Selventa).
Each biological entity in the network and its assumed

mode of regulation is a potential hypothesis (e.g. pre-
dicted decrease in NFE2L2 activity). For each hypothesis,
we can now compare all possible downstream gene ex-
pression changes in the knowledge base with the ob-
served gene expression changes in the experiment. We
consider two metrics to quantify the significance of a hy-
pothesis with respect to our experimental data set, namely
enrichment and correctness. The Enrichment p-value for a
hypothesis h quantifies the statistical significance of find-
ing (#incorrect + #correct) gene expression changes within
the set of all genes downstream of h. The Correctness
p-value is a measure of significance for the score of a hy-
pothesis h defined as (#correct - #incorrect). The KLF4+
example below shows a depiction of one significant hy-
pothesis with corresponding downstream transcript
changes. Molecular entities implicated by individual hy-
potheses can be grouped into biological processes to get a
more comprehensive picture of predicted changes (see ex-
ample in Figure 1).

Network modeling of the CRE hypotheses
The analysis results are visualized using the Causal
Reasoning Browser, a Java application based on the open-
source biological network viewer Cytoscape [23] as pre-
viously described [17]. Briefly, in the CRE browser an
overview graph allows users to visualize hypotheses and
examine their network relationships in the context of
the causal relationships obtained from the literature

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18801
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18801


Figure 1 Ability of CRE to reveal the similar molecular mechanisms of Isoprenaline induced cardiac hypertrophy based on rat (A) and
mouse (B) independent experiments. Both models show similar molecular mechanisms mostly known for their role in hypertrophic
cardiomyopathy. (Blue = predicted decrease, Yellow = predicted increase).
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based knowledgebase. To facilitate the construction of
biological networks from the generated hypotheses, sev-
eral analytical tools were developed e.g. a clustering tool
uses cosine similarity metric and an average linkage
method to group related hypotheses together [24].

HEK293 TGFβ reporter assay methods
HEK-293 cell line was obtained from American Type
Culture Collection (ATCC; Manassas, VA). HEK-293
cells were grown in Eagles Minimum Essential Medium
(ATCC) containing 10% fetal bovine serum and 1%
penicillin-streptomycin. Cells were maintained at 37°C,
5% CO2, 95% humidity.
TGFβ (SMAD2/SMAD3/SMAD4) Cignal lentiviral

construct and transducing reagents were purchased from
SABiosciences (Frederick, MD). Cells were plated in 12-
well plates at 2.5×105 cells per well. Transductions were
performed according to manufacturer’s directions, using
20 μL of lentiviral particles and 8 μM concentration of
Sureentry (SABiosciences) transfection reagent. Stable
cell lines were selected using 1 μg/mL puromycin
(Sigma, St. Louis, MO). Single cells were isolated from
Polyclonal cell lines using a FACS Vantage Cell Sorter
(BD, Franklin Lakes, NJ), and expanded.
Transduced cells were plated in 384-well plates at

2000 cells/well. After overnight incubation, cells were in-
duced using 25 ng/ml hTGFβ1 protein (Sigma # T7039)
for 1 hour. Cells were then dosed with varying concen-
trations of test compound at a final 1% DMSO concen-
tration and incubated for 24 hours in a 37° incubator
with 5% CO2. Luciferase activity was determined using
Steady-Glo Luciferase Assay Reagent to cells. (Promega,
Madison, WI). Luminescence was measured on an
EnVision 2103 Multilabel Reader (Perkin-Elmer, Waltham,
MA). To evaluate inhibitory effects of the test compounds
on the TGFB1 reporter, it was necessary to first stimulate



Enayetallah et al. BMC Pharmacology and Toxicology 2013, 14:46 Page 5 of 12
http://www.biomedcentral.com/bmcpharmacoltoxicol/2050-6511/14/1/46
TGFB1 expression. The in vitro reporter cell lines express
low basal levels of TGFB1 by design for the original pur-
pose of agonist evaluation. In addition, the Envision plate
reader used for detection of the reporter assay luciferase
readout is unable detect values lower that zero. Induction
of TGFB1 expression with a stimulant allowed us to in-
duce TGFB1 luciferase readout such that we were able run
the assay in antagonist mode. This differs from in vivo
TGFB1 expression levels, which allow for evaluation of a
decrease or increase in expression.
qRT-PCR
Quantitative real time polymerase chain reaction assays
were performed in triplicates (n = 3 per treatment group)
in rat heart tissue derived immortalized H9C2 cells
treated with cardiotoxic and reference compounds using
a 384 well format on the ABI 7900HT. Relative quantifi-
cation values (ΔΔCt) for Klf4 (p/n 4331182) message
were calculated using the ABI SDS 2.3 software compar-
ing compound treatment to DMSO vehicles after
normalization to β-actin (p/n 4352340E.) The ABI 2X
Master Mix (p/n 4370074) was used with standard cyc-
ling protocols.
Results
Causal reasoning convergence
One of the proposed advantages in this study is the abil-
ity of the causal reasoning approach to abstract similar
molecular events from microarray experiments from dif-
ferent sources, models and chips, thus overcoming tech-
nical and biological variability that otherwise make the
comparison at the gene level challenging. Therefore, we
investigated the convergence capability of CRE in
detecting expected similar biological events from data
generated in different species, gene-chips and different
experimental settings (Iconix Drugmatrix database and
GEO public data, see Methods). Isoprenaline is a widely
studied prototypic compound for hypertrophic cardio-
myopathy with documented molecular mechanisms [18]
and its effect in rats and mice is compared here. Indeed,
comparison of two independently generated gene ex-
pression datasets, for Isoprenaline treated mouse heart
tissue and from rat heart tissue, reveals very similar
causal reasoning biological networks (Figure 1).
The major molecular events (Figure 1) were con-

structed by selecting the highest ranking hypotheses and
their closest significant neighbors followed by elimin-
ation of redundant and surrogate hypotheses as previ-
ously described [17]. The molecular networks from both
rats and mice largely support similar biological events
such as increased hypoxia/ischemia, angiotensin signal-
ing, oxidative stress and inflammation, all of which are
known mechanisms of cardiac stress response [25-29].
Cardiac liabilities and cytotoxicity of test compounds
We selected a set of test compounds with reported
ECG-type abnormalities and/or structural cardiac toxic-
ities and of diverse pharmacology (Table 1). The ATP
depletion IC50 concentration at 48 hours in H9C2 cell
line was used to determine the microarray experimental
concentrations. However, we harvested the cells at
24 hours for RNA extraction and microarray analysis
with the rationale of investigating earlier molecular
events preceding cell death. All compounds exhibited
IC50 in the low micromolar range with the exception of
Dexamethasone and Terbutaline.

Examples of in vivo to in vitro causal networks
All in vitro and in vivo experiments had a significant
number of gene expression changes to drive causal rea-
soning analysis with the exception of Terbutaline, which
did not elicit any gene expression changes in either of
the two cell lines used and hence its translatability could
not be further investigated. Additional file 1: Table S1
summarizes the significant CRE hypotheses and their
statistical values based on the following cutoffs: 3 or
more supporting genes, Enrichment and Correctness
p-values <0.01 and Rank 35 or less. Figures 2 and 3 depict
examples of low and high in vivo to in vitro translatability
of molecular responses for Amiodarone and Dexametha-
sone, respectively.
Outlined in Figure 2 are the major signaling net-

works differentiating the Amiodarone effect on rat heart
(Figure 2A) and primary rat cardiomyocytes (Figure 2B).
In vivo, we found a number of hypotheses related to
Amiodarone’s suggested mechanisms of action through
cellular Ca++ and potassium modulation [30,31], and
reported side effects such as binding to thyroid antagon-
ism and hypothyroidism [32,33]. None of the mechanism
related hypotheses were found in vitro. Moreover, all
major causal reasoning supported biological networks
were significantly different. Inflammation is one of the
major signaling networks predicted, albeit with opposite
directionality being predicted decreased in vivo and pre-
dicted increased in vitro. Suggested downstream effects
varied significantly as well, decreased cell cycle in vivo ver-
sus apoptosis in vitro and a larger tissue remodeling/struc-
tural signal primarily driven by decreased TGFB in vitro.
At the hypothesis level very few similarities were found
between in vivo cardiac tissue and in vitro primary rat
cardiomyoctes, e.g. Hypoxia- and SRF- hypotheses.
Contrary to Amiodarone, Dexamethasone shows high

degree of in vivo to in vitro translatability at both the
process and individual hypothesis levels. Figure 3 shows
the causal reasoning inferred molecular response to
Dexamethasone in rat cardiac tissue (Figure 3A) and Pri-
mary rat cardiomyocytes (Figure 3B). Causal reasoning
generated a number of individual hypotheses reflective



Figure 2 Causal reasoning networks support poor translatability of Amiodarone induced molecular mechanisms in vivo rat heart (A) to
in vitro primary rat cardiomyoctes (B). Major differences can be seen in the lack of mechanism of action related hypotheses in vitro, predicted
opposite directionality of the inflammation sub-networks, the size and composition of the tissue remodeling signal and different downstream
responses (Apoptosis versus decreased cell cycle signaling). (Blue = predicted decrease, Yellow = predicted increase).
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of dexamethasone action such as Dexamethasone+,
NR3C1+ and glucocorticoid+. Known dexamethasone ef-
fect is also reflected by supported biological processes
such as the anti-inflammatory sub-network both in vivo
and in vitro. Dexamethasone is also highly translatable
to H9C2 cells as well with a causal network that is highly
similar to that of primary rat cardiomyocytes (not shown).

In vivo to in vitro translatability of the major
biological processes
The top ranking causal networks from each in vivo or
in vitro experiment were summarized at the biological
process level in Figure 4. A network was determined to
be top ranking if it was supported by a cluster of at least
3 hypotheses and one of which ranks in the top 25 hy-
potheses as previously described [17]. For every com-
pound at least one process was translatable to at least
one of the two cell lines used. Overall, H9C2 cells
exhibited larger number of biological networks, perhaps
a reflection of greater sensitivity as compared to both
primary rat cardiomyocytes and in vivo cardiac tissue.
H9C2 cells also demonstrated a trend of general cell
stress/cytotoxicity responses that do not necessarily trans-
late to in vivo events, such as endoplasmic reticulum
stress and oxidative stress. However, for every compound
there was at least one biological process that translated
well from in vivo to H9C2 cells. Some of the biological
processes that are supported to translate equally well in
H9C2s and RCMs are decreased cell cycle signaling, in-
creased tissue remodeling and increased DNA damage
and repair. Hypoxia is one of the mechanisms that is sup-
ported to be common in vivo (6 out of 8 compounds) but
does not appear to translate consistently well to neither
H9C2 cells (2 out of 8 compound) nor RCMs (3 out of 8
compounds). Tissue remodeling biological processes
appeared to be the most translatable across all compounds
and in both H9C2s and RCMs. However, the tissue remod-
eling networks makeup was not necessarily homogenous



Figure 3 Causal reasoning networks support high translatability of dexamethasone induced molecular mechanisms from in vivo rat
heart (A) to in vitro primary rat cardiomyocytes (B). The overview network illustrates hypotheses reflective of the mechanism of action such
Dexamethasone + and glucocorticoid receptor NR3C1+ as well as an anti-inflammatory hypotheses. (Blue = predicted decrease, Yellow = predicted increase).
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in all treatments with variations in the types of hypotheses
as well as the directionality of hypotheses. Examples of tis-
sue remodeling networks included hypotheses of both in-
creased and decreased TGFB signaling, structural protein
changes such as Dystrophin (DMD) and Myocardin
(MYOCD), and cytoskeleton remodeling proteins such as
BARX2 and FLII.

Identifying KLF4 as a potential common hub
in cardiotoxicity
KLF4+ was one of the frequent hypotheses in both cell
lines and in vivo (See Additional file 2: Figure S1). Add-
itionally, KLF4+ was found to be connected to key hy-
potheses from different toxicity mechanisms such as
IFNG in inflammation, TGFB1 in tissue remodeling and
TP53 and CDKN1A in cell cycle (see example networks
in Figures 2 and 3). This suggests a potential role of
KLF4 as a central hub in cardiotoxicity. Figure 5 shows
an example of a KLF4+ hypothesis and the supporting
observed gene expression changes. In addition to the
CRE prediction of increased KLF4 activity the observed
KLF4 gene expression levels from the Affymetrix gene
chips showed consistent increase correlating well with
the CRE predictions (Figure 6). Finally, subsequent
follow-up RT-PCR experiment to measure KLF4 mRNA
in H9C2 in response to treatment showed consistent re-
sults (Table 2). Doxorubicin was one of the exceptions
where there was observed decrease in mRNA on the



Figure 4 Heatmap of major causal reasoning biological networks elicited by cardiotoxic compounds in vivo and in vitro.

Enayetallah et al. BMC Pharmacology and Toxicology 2013, 14:46 Page 8 of 12
http://www.biomedcentral.com/bmcpharmacoltoxicol/2050-6511/14/1/46
Affymetrix gene chip despite of predicted KLF4+ hy-
pothesis. However, repeating the experiment with a
lower Doxorubicin concentration that corresponds to
the IC20 resulted in 2.52 fold increase in KLF4 mRNA
perhaps suggests the CRE prediction was for a molecular
event at an earlier time point.

Potential role of TGFB1 in cardiotoxicity and TGFB1
reporter assay
TGFB signaling was one of the most frequently per-
turbed signaling pathway in vivo and in vitro with all
tested compounds with the exceptions of Dexametha-
sone in RCM and Cyclosporine in H9C2 cells. However,
the perturbation was in many cases in opposing directions
in vivo vs. in vitro (Table 3). Next, we employed a TGFB1
reporter assay to experimentally test the predicted effect
of compounds on TGFB1 activity in vitro. Compound
treatment following stimulation with TGFB1 demonstrates
the inhibitory effect of the compounds in dose dependant
manner consistent with the CRE predictions (Figure 7). In
absence of TGFB1 stimulation none of the tested com-
pounds had a stimulatory effect (data not shown).

Discussion
Gene expression changes of nine compounds known to
induce cardiotoxicity were profiled in rat cardiomyocytes,
Figure 5 An example of KLF4+ hypothesis subgraph showing the obs
of activity in in vitro H9C2 cells. Yellow = predicted increase, Red = obse
rat embryonic heart tissue-derived H9C2 cells, and heart
tissue from treated rats. There was, as expected, significant
variation between drugs and test systems at the individual
gene level. In this work we applied a recently developed
method [16,17] to understand convergence of gene ex-
pression changes based on their potential upstream
regulators. As described the CRE analysis revealed a con-
vergence of the explained changes around a set of bio-
logical pathways. Specifically, pathways associated with
tissue remodeling, cell cycle, oxidative stress, and DNA
damage were particularly well conserved across cardio-
toxic drugs and between in vivo and in vitro test systems.
This level of concordance between the in vivo and in vitro
systems was encouraging but there were some clear points
of disagreement between the experimental systems provid-
ing a stark reminder of the limitations of in vitro systems.
An example of this difference is the greater diversity of
signaling in H9C2 cells compared to rat cardiomyocytes.
This may be explained by the immortalized nature of
H9C2 cells with active cell cycle compared to the primary
rat cardiomyocytes. Another possibility is that H9C2 cells
are less similar to cardiomyocytes thus more likely to ex-
hibit non-cardiomyocyte phenotype. Although, the whole-
sale differences between the Amiodarone in vitro and
in vivo transcriptional changes highlights that the overall
predictivity of cellular systems can vary from compound
erved gene expression changes that led to the predicted increase
rved mRNA increase and Green = observed mRNA decrease.



Figure 6 Box plot shows a trend where predicted KLF4 hypothesis had a corresponding observed increase in KLF4 mRNA greater than
1.5 fold on the gene chip for in vitro H9C2 cells. However, CRE did not predict all significant increases of KLF4 mRNA.
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to compound depending on specific expression of drug
targets, the opposing TGFB signals observed across the
majority of tested drugs points to a more fundamental in-
ability of the in vitro systems to replicate in vivo signaling
networks. By better understanding these limitations
though, we might still be able to address those instances
of successful translations of pathway-level signals of tox-
icity between in vivo and in vitro systems to quickly and
efficiently triage potential therapeutics for their potential
to induce adverse events.
The CRE method provided interesting insights in this

case and summarized the observed expression changes
efficiently for further analysis. However, it is important
to note its potential shortcomings. The approach is only
as powerful as its underlying knowledgebase of prior
biological knowledge. Even a knowledgebase that en-
compasses all currently known biomedical relationships
would not be able to summarize changes that have never
been observed before. In our experience [17] the approach
usually provides helpful insights as many molecular
Table 2 KLF4 mRNA fold changes in H9C2 from the gene
microarrays and subsequent confirmation using qRT-PCR

qRT-PCR Affymetrix

Amiodarone 2.2 1.62

Amitryptiline 2.8 2.3

Cyclosporine 2.1 1.84

Dexamethasone 1.3 2.14

Dobutamine 1.7 1.93

Doxorubicin −9.7* −4.92*

Loratadine 2.4 2.1

Mitoxantrone 1.4 2.06

*The decreased levels in Doxorubicin might be a reflection of severe
cytotoxicity. However, KLF4 measurement at a lower dose (IC20 instead of
IC50) resulted in 2.52 fold increase.
regulatory processes have been well researched over time.
Given a comprehensive knowledgebase results often turn
up combinations of upstream regulators that have been
observed in a different biological context previously but
are novel for the biological problem under study.
Almost as important as the overlap between the

in vivo and in vitro outcomes of drug treatment is the
notion that the critical biological processes that seem to
underlie the drug toxicity can be visualized across vari-
ous cell types. Much work has been devoted to trying to
build an in vitro system that accurately replicates intact
organ systems in a dish. These technologies have tended
to be expensive, laborious, and low-throughput, thus
limiting their utility in any type of routine predictive
screening strategy. In addition, these complex culture
systems still fail to fully recapitulate the in vivo organ
system they seek to model, particularly for long term
dosing studies. What this work suggests though is that
these types of convoluted cell models might not be ne-
cessary for understanding the safety risk of a segment of
compounds. When the underlying mechanism of the
toxicity is a basic pathway associated with cell health
and viability, the specific cell system is of minimal im-
portance. Moving from a primary cardiomyocyte, which
recapitulates many important activities of an in vivo car-
diac cell; to an immortalized rat heart tissue derived cell
line such as H9C2 did not result in the loss of transla-
tional power. Likewise, the primary cardiomyocytes were
just as likely to show discordance from the in vivo as the
immortalized cell line was.
The traditional thinking has been that the reason for

the organ specificity of drug toxicity was due to unique
innate traits of the particular organ being affected. This
thinking has largely driven a desire to have more organ-
like in vitro culture systems. The notion that very gen-
eric, non-organ specific mechanisms of toxicity might



Table 3 Predicted TGFB signaling in vivo and in cell lines

Predicted TGFB signaling

In vivo H9C2 RCM

Amiodarone ↑ ↓ ↓

Amitryptiline ↑ ↓ ↓

Cyclosporine ↑ ↔ ↓

Dexamethasone ↑ ↑ ↔

Dobutamine ↑ ↓ ↓

Doxorubicin ↑ ↑ ↓

Loratadine ↑ ↓ ↓

Mitoxantrone ↑ ↓ ↓
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explain a large portion of organ-specific toxicity runs
counter to this thinking and leads to questions of why
compounds with these types of liabilities do not show
gross, multi-organ toxicities in vivo. It has long been ap-
preciated that differences in distribution and accumula-
tion of medications directly affect their efficacy [34]. The
same can be said about toxicity. Cardiotoxicity is not en-
tirely due to the unique “cardiac-ness” of the cells but
due to the fact that the heart is the organ that sees the
greatest concentration of the compound as a result of a
combination of intrinsic and extrinsic expression of
transporters and clearance mechanisms. Therefore, in an
in vitro system, where one can ensure exposure of the
compound to the cell, reproducing an intact organ sys-
tem is not necessary for visualizing the toxicity risk.
This is not to say that all types of toxicity can be mod-

eled in a generic cell line. There are several types of spe-
cific drug-induced toxicities were specific functionalities
must be present in a cell system in order to visualize that
toxicity. For example, induced pluripotent stem cell de-
rived cardiomyocytes have been extensively characterized
(including comparative gene expression profiling) and
Figure 7 Inhibition of TGFB reporter assay. HEK293-TGFB reporter cells tre
evaluated to study cardiac specific end points (such as
Beating and Contractility) [35,36]. Utilization of these
types of advanced test systems that take advantage of ‘car-
diac-ness’ of these cells might be helpful for certain evalu-
ations. This may be the case for Amiodarone in this study.
For instance, drug-induced arrhythmias could be attrib-
uted to a very unique feature of cardiomyocytes. Ideally,
an in vitro system that predicts this outcome would in-
corporate a cell that beats so that any alteration in pace or
occurrence of rhythmic cell contraction could be directly
measured. But even with this example, distilling this very
organ-specific toxicity down to the basic molecular mech-
anism that drives it enables a simple, cell-neutral assay for
predicting it, hERG binding and dofetilide competition. As
we gain a better appreciation of the mechanisms of tox-
icity, there will be a reduction in the need for costly pri-
mary cell cultures in predictive toxicology.
The mechanisms of toxicity uncovered in this work

are not entirely novel. Disregulating cell cycle, inducing
DNA damage, and producing oxidative stress has long
been appreciated as having a negative effect on cellular
health, often leading to obvious cytotoxicity. It is not
surprising then that a basic cytotoxicity assay has been
shown to have high predictive power for in vivo toxicity
regardless of the organ-specific nature of that toxicity
[37,38]. This similarity in toxicity across cell lines of dif-
ferent tissue origins can also be seen in our data. Both
the primary cardiomyocytes and immortalized skeletal
muscle cells showed a clear down regulation of TGFB
signaling upon application of cardiotoxicants. We were
able to reproduce this data utilizing a reporter system
cloned in cell line derived from kidney. Although this re-
sponse was in opposition to what was observed in vivo,
upon moving to the in vitro system, there was a
complete conservation of signaling at the pathway level
regardless of the tissue type the cell line was meant to
ated in dose response with compounds known to induce cardiac toxicity.
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model. Similarly, both primary cardiomyoctes and im-
mortalized H9C2 cells showed predicted increase in
KLF4 which we were able to reproduce by measuring
KLF4 expression levels using RT-PCR. KLF4 is a hub
that mediates the effect of different cell stress signals
such as oxidative stress and DNA damage on critical cell
functions such as cell proliferation and differentiation
[39]. In particular, KLF4 is known to play a role in car-
diac function. For example, KLF4 has been shown to
mediate cardiac myofibroblast differentiation in response
to Angiotensin II stimulation partly through regulating
TGFB1 [40]. KLF4 has been also shown to be involved
in regulating the cardiac hypertrophic response [41].
The finding concerning TGFB signaling has implica-

tions beyond this work. In recognition of the need for
more and better in vitro tools for toxicity prediction,
many different reporter assays and screening systems
have been built and are being marketed for this purpose.
The choice of signaling pathways and cellular endpoints
used for these products are, for the most part, based not
on detailed validation of the tools for their designed pur-
pose. Instead the significance of these endpoints is taken
exclusively from literature without fully understanding
the impact of moving them to an in vitro detection sys-
tem. The link between aberrant TGFB signaling and po-
tential adverse events is well established [42-44]. Using a
reporter system to measure the potential of a compound
to induce that signaling network in vivo is clearly not
that straightforward though, based on the finding of this
work. Until the translatability of tools like the TGFB re-
porter system can be validated, caution must be taken in
utilizing it and tools like it for predictive screening.
Conclusions
There is a desperate need in modern drug discovery for
high-throughput, cost effective assay technologies that
are highly predictive of in vivo toxicity. One of the pri-
mary concerns in adapting these assays for triaging
newly developed compounds is the ability to translate an
in vitro signal to an in vivo outcome. This work adds to
the growing literature that strongly suggests that an
in vivo/in vitro connection can be drawn through the
use of basic cellular mechanisms but there are limita-
tions to these predictions that are independent of the re-
lationship between the cell type and the target tissue.
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