

POSTER PRESENTATION

Open Access

Activation profile of cGMP-dependent protein kinase $I\alpha$

Sabine Wolter^{1*}, Marina Golombek¹, Frank Schwede², Hans-Gottfried Genieser², Stefan Dove³, Roland Seifert¹

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

Background

cGMP-dependent protein kinase (PKG) is a serine/ threonine kinase which is potently activated by cGMP [1]. PKG is encoded by two genes, forming two different proteins, PKGI and PKGII. The two isoforms of PKGI, PKGIα and PKGIβ, differ in the N-terminal amino acid sequences. PKGI isozymes are homodimers with two identical subunits possessing a catalytic and a regulatory domain each. The regulatory domain contains two nonidentical binding sites for cyclic nucleotides (cNMPs), i.e., a slowly exchanging and a rapidly exchanging site. The activation constant (K_a) of PKGIα for cGMP is about 3-fold lower than the corresponding K₂ of PKGIB suggesting distinct physiological roles of the isoforms. In addition to cGMP, other cNMPs and also cNMP analogues activate or inhibit PKG [2-4]. While many investigations focussed on discrimination between the cNMP binding sites by employing cGMP and cAMP analogues, little is known about interaction of PKGIa with cCMP analogues or with Rp- and Sp- diastereomers of cCMP phosphorothioates.

As was shown by Desch et al. [5], the membrane-permeable cCMP analogue dibutyryl-cCMP (DB-cCMP) induces smooth muscle relaxation and activates PKGI in aortic tissue lysates. Therefore, we have studied 4-MB-cCMP, the resulting active metabolite after cleavage of DB-cCMP by esterases, and also corresponding substances from cAMP and cGMP, on purified PKGIa.

Materials and methods

PKG kinase activity was measured *in-vitro* by a radiometric kinase assay in the presence of cGMP or different cNMP analogues. pEC_{50} values, K_a , Hill slopes and E_{max} values were calculated using GraphPad Prism software.

* Correspondence: wolter.sabine@mh-hannover.de

¹Institute of Pharmacology, Hannover Medical School, Hannover, Germany
Full list of author information is available at the end of the article

 E_{max} values were related to E_{max} values of the activation of PKGI α by cGMP, which was set to 1.00.

Results and discussion

Besides the known activator cGMP, many other cNMPs and cNMP analogues are activators of PKGI α , with distinct activation constants (pEC₅₀), specific Hill slopes and different maximal effects (E_{max}) (Table 1). The most potent and effective activator for PKGI α was cGMP. The active metabolite of DB-cGMP, 2-MB-cGMP was less potent and effective.

cAMP and 6-MB-cAMP showed similar potency, but 6-MB-cAMP had a higher efficacy than cAMP. 4-MB-cCMP was a more effective activator than cCMP, but showed a reduced potency.

Table 1 pEC₅₀, $K_{a\prime}$ Hill slopes and E_{max} for the activation of PKGl α by cNMPs.

pEC ₅₀	K_a (μM)	Hill slope	E_{max}
6.98 ± 0.04	0.11	1.71 ± 0.36	1.00 ± 0.04
5.84 ± 0.13	1.45	1.12 ± 0.34	0.66 ± 0.03
4.82 ± 0.11	15.13	1.28 ± 0.39	0.59 ± 0.05
4.67 ± 0.06	21.38	1.35 ± 0.19	0.81 ± 0.03
4.58 ± 0.14	26.30	1.84 ± 0.53	0.55 ± 0.04
4.05 ± 0.10	89.13	1.10 ± 0.23	0.71 ± 0.06
3.72 ± 0.61	190.55	1.38 ± 2.86	0.16 ± 0.01*
n.d.	n.d.	n.d.	n.d.
3.53 ± 0.97	295.12	1.11 ± 1.34	0.17 ± 0.02*
n.d.	n.d.	n.d.	n.d.
4.72 ± 0.04	19.05	1.54 ± 0.16	0.87 ± 0.02
4.15 ± 0.04	70.79	0.85 ± 0.21	0.72 ± 0.03
3.98 ± 0.04	104.71	2.06 ± 1.93	0.69 ± 0.03
	6.98 ± 0.04 5.84 ± 0.13 4.82 ± 0.11 4.67 ± 0.06 4.58 ± 0.14 4.05 ± 0.10 3.72 ± 0.61 n.d. 3.53 ± 0.97 n.d. 4.72 ± 0.04 4.15 ± 0.04	6.98 ± 0.04 0.11 5.84 ± 0.13 1.45 4.82 ± 0.11 15.13 4.67 ± 0.06 21.38 4.58 ± 0.14 26.30 4.05 ± 0.10 89.13 3.72 ± 0.61 190.55 n.d. n.d. 3.53 ± 0.97 295.12 n.d. n.d. 4.72 ± 0.04 19.05 4.15 ± 0.04 70.79	6.98 ± 0.04 0.11 1.71 ± 0.36 5.84 ± 0.13 1.45 1.12 ± 0.34 4.82 ± 0.11 15.13 1.28 ± 0.39 4.67 ± 0.06 21.38 1.35 ± 0.19 4.58 ± 0.14 26.30 1.84 ± 0.53 4.05 ± 0.10 89.13 1.10 ± 0.23 3.72 ± 0.61 190.55 1.38 ± 2.86 n.d. n.d. n.d. 3.53 ± 0.97 295.12 1.11 ± 1.34 n.d. n.d. n.d. 4.72 ± 0.04 19.05 1.54 ± 0.16 4.15 ± 0.04 70.79 0.85 ± 0.21

^{*:} value shows the maximum activation with 3 mM cNMP without saturation of the concentration/response curve

^{**:} data from Wolter et al, Biochem Biophys Res Commun. 2011, 415: 563-566. n.d.: not determinable because of lack of saturation of the concentration/response curve.

The cNMP analogues activated PKGIα in the order of potency cGMP > 2-MB-cGMP > cAMP > 6-MB-cAMP > cCMP > 4-MB-cCMP and in the order of efficacy cGMP > 6-MB-cAMP > 4-MB-cCMP > 2-MB-cGMP > cAMP > cCMP.

Rp-cAMPS and Rp-cCMPS did not activate PKGI α . The stable phosphorothioates Sp-cAMPS and Sp-cCMPS activated PKGI α only at high concentrations in the order of potency and efficacy cGMP > cAMP > cCMP > Sp-cAMPS ~ Sp-cCMPS.

Furthermore, we illustrate binding of cNMPs for PKG based on existing crystal structures and discuss current problems with respect to molecular modelling approaches. In conclusion, 4-MB-cCMP is a more effective PKG activator than cCMP and, therefore, a valuable tool for analysing the second messenger role of cCMP [6].

Authors' details

¹Institute of Pharmacology, Hannover Medical School, Hannover, Germany. ²Biolog Life Science Institute, Bremen, Germany. ³Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany.

Published: 29 August 2013

References

- Hofmann F: The biology of cyclic GMP-dependent protein kinases. J Biol Chem 2005, 280:1-4.
- Corbin JD, Øgreid D, Miller JP, Suva RH, Jastorff B, Døskeland SO: Studies of cGMP analog specificity and function of the two intrasubunit binding sites of cGMP- dependent protein kinase. J Biol Chem 1986, 261:1208-1214.
- Butt E, van Bemmelen M, Fischer L, Walter U, Jastorff B: Inhibition of cGMP- dependent protein kinase by (Rp)-guanosine 3',5'monophosphorothioates. FEBS Letters 1990, 263:47-50.
- Wolter S, Golombek M, Seifert R: Differential activation of cAMP- and cGMP- dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun 2011, 415:563-565.
- Desch M, Schinner E, Kees F, Hofmann F, Seifert R, Schlossmann J: Cyclic cytidine 3',5'-monophosphate (cCMP) signals via cGMP kinase I. FEBS Letters 2010, 584:3979-3984.
- Beste KY, Seifert R: cCMP, cUMP, cTMP, cIMP and cXMP as possible second messengers: development of a hypothesis based on studies with soluble guanyly I cyclase α1β2. Biol Chem 2013, 394:261-270.

doi:10.1186/2050-6511-14-S1-P79

Cite this article as: Wolter et al.: Activation profile of cGMP-dependent protein kinase Ia. BMC Pharmacology and Toxicology 2013 14(Suppl 1):P79.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

