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Abstract

Background: We have previously shown that the thromboxane (TXA2) receptor agonist, U46619, can directly
induce ventricular arrhythmias that were associated with increases in intracellular calcium in cardiomyocytes. Since
TXA2 is an inflammatory mediator and induces direct calcium changes in cardiomyocytes, we hypothesized that
TXA2 released during ischemia or inflammation could also cause cardiac remodeling.

Methods: U46619 (0.1-10 uM) was applied to isolated adult mouse ventricular primary cardiomyocytes, mouse
ventricular cardiac muscle strips, and cultured HL-1 cardiomyocytes and markers of hypertrophy and cell death were
measured.

Results: We found that TXA2 receptors were expressed in ventricular cardiomyocytes and were functional via
calcium imaging. U46619 treatment for 24 h did not increase expression of pathological hypertrophy genes (atrial
natriuretic peptide, 3-myosin heavy chain, skeletal muscle a-actin) and it did not increase protein synthesis. There
was also no increase in cardiomyocyte size after 48 h treatment with U46619 as measured by flow cytometry.
However, U46619 (0.1-10 uM) caused a concentration-dependent increase in cardiomyocyte death (trypan blue,
MTT assays, visual cell counts and TUNEL stain) after 24 h. Treatment of cells with the TXA2 receptor antagonist
SQ29548 and inhibitors of the IP3 pathway, gentamicin and 2-APB, eliminated the increase in cell death induced
by U46619.

Conclusions: Our data suggests that TXA2 does not induce cardiac hypertrophy, but does induce cell death
that is mediated in part by IP3 signaling pathways. These findings may provide important therapeutic targets for
inflammatory-induced cardiac apoptosis that can lead to heart failure.
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Background

Thromboxane A2 (TXA2) is a member of the prosta-
glandin family and is produced from prostaglandin H2
via thromboxane-A synthase activity. It has long been
recognized that TXA2 levels are elevated in the circula-
tion as a result of obesity [1], systemic inflammation [2]
and myocardial ischemia [3-5]. In addition, TXA2 has
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been strongly implicated in mediating cardiovascular
events, principally because of its well-characterized ac-
tions in inducing platelet aggregation and vasoconstric-
tion [6,7]. Because of these actions, antiplatelet agents
such as aspirin have been used as a preventative therapy
to reduce the risk of cardiovascular events [8]. While
there is little doubt that TXA2 can play an indirect role
in contributing to heart disease via vasoconstriction and
platelet aggregation, the goal of our laboratory is to
characterize the direct actions of TXA2 on the heart.
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Previously, while investigating the ability of the TXA2
mimetic (U46619) to stimulate peripheral sensory neu-
rons involved in autonomic nervous system reflexes in
the anesthetized rabbit [9], we noted that left atrial injec-
tions of U46619 induced ventricular arrhythmias. These
arrhythmias were independent of changes in coronary
blood flow, systemic vasoconstriction, and without the
induction of myocardial ischemia [10], which indicated
that the effect was a direct action on the heart by U46619.
To further elucidate the mechanisms responsible for these
arrhythmias, we found that rabbit ventricular cardiomyo-
cytes expressed TXA2 receptors (TXA2Rs) and antagon-
ism of TXA2R eliminated the arrhythmias [10]. It is well
known in platelets and smooth muscle cells that stimula-
tion of TXA2R activates phospholipase C (PLC), increases
inositol trisphosphate (IP3) production, and releases
Ca®" from intracellular stores [11-15]. Our laboratory
and others have also found that U46619 stimulation of
TXA2Rs on adult ventricular cardiomyocytes (AVCMs)
increases intracellular Ca®* [16-19]. Crucially, our labora-
tory found that pre-treatment with an inhibitor of IP3
formation, gentamicin, or an inhibitor of IP3 receptors,
2 aminoethyl diphenylborate (2-APB), not only pre-
vented the increase in intracellular Ca** in vitro, but also
inhibited the formation of U46619 induced arrhythmias
in vivo [10,16]. Because intracellular Ca>* homeostasis is
critical to normal heart function and disruption of intra-
cellular Ca®* not only triggers arrhythmias [20], but also
cardiac hypertrophy [21,22] and cell death [23], we wanted
to investigate other potential roles TXA2 may play in the
myocardium.

Previous research in rodents has demonstrated an im-
portant role for TXA2 signaling as being associated with
reduced ejection fraction [24-26]. However, it is unclear
if the reduced cardiac function is due to TXA2 inducing
pathological hypertrophy, cardiomyocyte cell death, or a
combination of these leading to remodeling. Various re-
ports have provided evidence supporting the potential
for both possibilities [24,26-28]. Specifically, Zhang et al.
[26] have shown that overexpression of the GTP binding
protein, Gh, induces cyclooxygenase 2 (COX2), TXA2
synthase, and TXA2R expression and an increase in
TXB2 (the metabolite of TXA2). They observed an in-
crease in left ventricular mass and heart weight to body
weight ratio, but also showed an increase in fibrosis and
apoptosis. These authors concluded that TXA2 may aug-
ment cardiac hypertrophy, but could also play a role in
cell death during remodeling. In a study by Lin et al.
[24], iron-overloaded mice (which have increased cardiac
TXA synthase and cardiac TXB2 levels) had increased
heart weight to body weight ratio in wild type, but not
TXA2 synthase null mice. While they did not see ven-
tricular wall hypertrophy, they did observe cardiac fibro-
sis which was reduced in the TXA2 synthase null mice.
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These results are complicated by all of the factors that go
along with in vivo studies. Specifically, it is possible that
other factors that were elevated in these studies, PGF,,
PGI,, and TNF,, via COX2 activation or downstream of
TXA2R activation may have contributed to the cardiac
phenotype [24,26]. Nevertheless, the results indicate that
TXAZ2 plays a role in cardiac function/remodeling.

What remains to be clarified is what type of response
TXA2 is most likely to directly induce on cardiomyo-
cytes in absence of other factors. Therefore, we wanted
to analyze the effects of cardiac TXA2R stimulation on
both hypertrophy and cell death in the same controlled
study utilizing the same agonist and concentrations to
determine which action is favored. Additionally, no stud-
ies have looked at IP3 inhibition to target the direct car-
diac TXA2 effects beyond our study with arrhythmias. It
is possible that this same signaling pathway is involved
in multiple cardiac effects mediated by TXA2R stimula-
tion. Since TXA2 has been shown to be associated with
reduced ejection fraction, it is necessary that we identify
the role of TXA2 in cardiac remodeling and identify
potential therapeutic targets for inhibition. Therefore,
we sought to determine if in vitro treatment of cardiac
tissue and isolated cells with a TXA2 mimetic alone
would: 1) induce cardiac hypertrophy and/or cell death,
and 2) determine if deleterious changes could be attenu-
ated with gentamicin or 2-APB treatment, as we have pre-
viously shown with U46619 induced arrhythmogenesis.

Methods

Materials

U46619, SQ29548, and 2-APB were purchased from
Cayman Chemical (Ann Arbor, MI). Hanks balanced
salt solution (HBSS) and Fura-2 AM were obtained
from Invitrogen (Carlsbad, CA). Enzymes for cardiomyocyte
digestion were purchased from Worthington Biochemical
(Lakewood, NJ). Total RNA Isolation kits were purchased
from IBI Scientific (Peosta, IA), and the real-time reverse-
transcriptase polymerase chain reaction (RT-PCR) was per-
formed using a TagMan RNA-to-CT 1 step kit and primers
and probes from ABI (Carlsbad, CA). Primary antibody for
TXA2R was purchased from Abcam (Cambridge, MA).
Gentamicin and fetal bovine serum was obtained from
Sigma-Aldrich (St. Louis, MO). DeadEnd Fluorometeric
TUNEL stain was purchased from Promega (Madison,
WI). All remaining reagents were purchased from Fisher
Scientific.

Animals

Twelve-week-old male CD-1 mice (Harlan Laboratories,
Madison, WI) were used in experiments using exogen-
ous U46619. All mice were housed in a temperature-
controlled (22 +2°C) room with a 12:12 h light-dark
cycle. Animals were fed ad libitum. All protocols were
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approved by the Animal Care and Use Committee of the
University of Missouri-Kansas City.

Isolation and culture of primary mouse AVCMs

Following cervical dislocation of mice, the heart was rap-
idly excised, extraneous tissue was removed, and the aorta
was cannulated under a dissection microscope. AVCMs
were isolated, utilizing retrograde perfusion via a pro-
prietary procedure developed in our laboratory with
Worthington Biochemical (Lakewood, NJ) as previously
described [29]. Briefly, hearts were retrograde perfused
through the aorta using a Langendorff perfusion apparatus
with Ca®*-free perfusion buffer (3 ml/min) for 4 min and
then switched to a digestion buffer containing collage-
nase II (18,000 U), papain (20 U), DNase (2,000 U) and
2,3-butanedione monoxime (BDM; 10 mM) for 8-10 min
at 37°C. The heart was removed from perfusion, cut into
pieces and pipetted gently to disperse cells in suspension.
Calcium-tolerant myocytes were then plated onto cham-
ber slides previously coated with 10pg/ml laminin and
kept in L15 medium (10% FBS, 2 mM L-glutamine) with
BDM (10 mM) for 1 h for attachment. After 1 h, serum-
containing media was switched to serum-free culture
media (L15, 0.2% BSA, 2 mM L-glutamine, 10 mM BDM)
for the remainder of the experiments.

HL-1 cardiomyocytes and flow cytometry

HL-1 cardiomyocytes were utilized since they maintain
phenotypic characteristics of adult myocytes [30], and
have been used previously in models of cardiac hyper-
trophy using flow cytometry [29,31-34] and cell death
[35-38]. HL-1 cardiomyocytes were plated (5,000/cm?)
in flasks precoated with 0.00125% fibronectin and 0.02%
gelatin. Cells were cultured for 24 h in Claycomb media
(supplemented with 10% FBS, 2 mM L-glutamine, 0.1 mM
norepinephrine, 0.3 mM ascorbic acid, 100 U/ml penicillin,
and 100 mg/ml streptomycin). Cells were treated with ve-
hicle (methyl acetate) or U46619 (0.1, 1, 5 and 10 pM) for
48 h in a minimal media (0.5% FBS, 2 mM L-glutamine,
and without penicillin-streptomycin, and norepinephrine)
prior to analysis. Cells were collected and analyzed for
changes in cells size by flow cytometry using FACSCalibur
forward scatter (FSC-H). FSC-H analysis of > 10,000 live
gated cells/sample from independent experiments were
normalized to vehicle controls and averaged.

Gene expression

Total RNA was isolated from serum starved (24 h)
HL-1 cardiomyocytes and AVCMs and real-time RT-
PCR was performed using the Corbett Rotor-Gene 6000
(Qiagen, Valencia, CA). Gene expression was conducted
using 22T analysis against B-actin. B-actin was chosen
as a housekeeping gene since U46619 treatment had
minimal changes in gene expression compared with
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vehicle-treatment. GAPDH comparisons also yielded
similar results as that with p-actin.

Total protein & western blot

Cardiac muscle strips and AVCMs were lysed in ice-cold
cell extraction buffer (Invitrogen), as described previ-
ously [29,39]. Total protein concentration of the samples
was determined by use of the micro bicinchoninic acid
protein assay (Fisher Scientific). Protein from cardiac
muscle strips were normalized to tissue weight (pg/mg).
Protein extracts from AVCMs (20-50 pg) were run on a
10% SDS-PAGE gels and proteins were transferred to
PVDF membranes using standard techniques to visualize
TXA2R protein. The membranes were blocked in 5%
BSA for 1 h at room temperature; primary antibodies
were diluted 1:1000 in 5% BSA and incubated overnight.
Blots were incubated in HRP-conjugated secondary anti-
body at 1:20,000 in 5% milk for 1 h at room temperature.
Bands were visualized by enhanced chemiluminescence.

Ca?* imaging

Serum starved HL-1 cells and isolated AVCMs were
loaded at room temperature with the Ca®* indicator dye,
fura-2 AM (Invitrogen; 2puM) in 0.025% pluronic F-127,
for 20 min. Cells were washed 3 times in HBSS and
allowed to de-esterify for 10 min at room temperature.
Intracellular Ca** levels were measured with an inverted
microscope with fluorescent imaging capabilities [Olympus
IX51 (Olympus, Melville, NY) and Hamamatsu Orca-ERGA
charge-coupled device cameras (Hamamatsu, Bridgewater,
NJ), Semrock Bright Line filter set (Semrock, Rochester,
NY), EXFO X-cite metal halide light source (EXFO,
Mississauga, ON, Canada), and Slidebook ratiometric
software (Intelligent Imaging Innovations)]. U46619 was
perfused into dishes and the ratiometric responses were
recorded. Data was only included if a positive control
KCI response was greater than a 100% increase above
the baseline fluorescence.

Tissue culture

CD-1 mouse ventricular tissue strips were isolated from
mouse hearts and used for the tissue culture experiments.
Hearts were quickly excised and placed into an ice-cold
cardioprotective medium that included the addition of
BDM (30 mM), as we have described previously [29,40].
Tissue cultures were treated with vehicle, or increasing
dosages of U46619 (0.1, 1, and 10 uM) or the positive con-
trol, FGF23 (35 pM), and then analyzed for changes in
total protein content using the micro bicinchoninic acid
protein assay as described above.

Cell death assays
HL-1 cardiomyocytes were plated in full Claycomb medium
as previously described. Twenty-four hours following
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plating, cells were switched to a serum and norepinephrine
free Claycomb medium. 24 h following serum starvation,
myocytes were treated with U46619 (0.01, 0.1, 1, 5, 10 uM)
for 24 h in the serum and norepinephrine free condition.

Lactate dehydrogenase (LDH) assay (Roche, Indianapolis,
IN): HL-1 cells were plated in a 96-well plate and treated
for 4-6 h with U46619 (1 and 10 M). Optical density was
measured at 490 and 690 nM wavelengths and the differ-
ence was calculated to determine LDH in the incubation
media. Minimum or baseline LDH activity was determined
using a plate of cells without U46619 treatment. Maximum
LDH activity was determined using untreated cells that
were permeabilized with 2% Triton-X. The percent of total
LDH release was then calculated for each treatment (ex-
perimental value- minimum)/(maximum-minimum)*100.

Trypan blue assay: Following U46619 treatment of
HL-1 cardiomyocytes, medium was removed and saved,
and the attached cells trypsinized (0.05%) for 3 min at
37°C. Medium and trypsinized cells were placed into a
tube with soybean trypsin inhibitor and pelleted at 500 g
for 3 minutes. The cell pellet was resuspended in 1 ml
of HBSS. 30 pL of cell suspension was added to 270 pl
of 0.4% trypan blue for 5 min. 10 uL of trypan blue
stained cells was added to the hemocytometer and try-
pan positive and negative cells were counted by an in-
vestigator blinded to the treatment conditions. This
process was repeated in triplicate for each condition and
the experiment was replicated on 4 separate occasions.

MTT Assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide): HL-1 cardiomyocytes were cultured
in a 96 well plate. After U46619 treatment, survival of
myocytes was determined as previously described [41].
Briefly, medium was removed from each well and replaced
with 90 pL of fresh phenol-red free medium. 10 pL of
12 mM MTT stock solution (dissolved in saline) was
added to each well. Cells were incubated for an additional
3 h in the presence of MTT (0.5%). After incubation
75 uL was removed from the wells and the reaction was
terminated via the addition of 50 pL of DMSO on a swir-
ling rocker. Cells were then incubated for 10 min at 37°C
and the absorbance was read at 540 nm in a spectropho-
tometer. The amount of blue formazan dye generated
from MTT is proportional to the number of live cells, thus
the assay is a viability test. Values of the reaction were ob-
tained after subtraction of matched blanks and the optical
densities (ODs) of the vehicles were taken as 100% for
comparisons with values for U46619 treated samples. Per-
cent of dead cells was calculated with the following equa-
tion (100'((ODU46619/ODveh)*100))'

Primary cardiomyocytes: Equal numbers of isolated
AVCMs were plated and allowed to attach to the laminin
substrate for 1 h as previously described. After 1 h, the
cells were washed three times in L15 containing BDM
(10 mM) to rinse away unattached cells, debris and serum.
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Next, the serum-containing media was switched to serum-
free culture media (L15, 0.2% BSA, 2 mM L-glutamine,
10 mM BDM) for 4 h. Then the cells were treated with
increasing concentrations of vehicle or U46619 (1, 5 and
10 uM) for 24 h.

Cell counts of primary AVCMs per field: Immediately
following the addition of vehicle and U46619, we took a
cell count (0 h) of AVCMs. Rod-shaped morphology,
with clear striations were the criteria used for identifying
viable cells, whereas round-shaped myocytes, loss of stri-
ation or membrane blebbing were considered non-viable
cells. After 24 h incubation, the cells were washed three
times in L15 medium containing BDM (10 mM) to rinse
away dead cells and debris and recounted (24 h). Using
the 10x objective on an inverted microscope, five fields
were counted per treatment condition and the number
of rod-shaped, striated myocytes was averaged in 3 inde-
pendent experiments by an investigator blind to the con-
ditions. We then calculated the ratio of healthy cells in
the U46619 wells/vehicle wells at 0 h and 24 h. Percent
change was determined by the formula ((24 h ratio — 0 h
ratio/ 0 h ratio)*100).

TUNEL Stain: isolated AVCMs were plated on laminin
coated plastic chamber slides and treated as previously
described. DeadEnd Fluorometric TUNEL stain was used
to label nuclear DNA fragmentation and was performed ac-
cording to manufactures recommendations. Briefly, AVCMs
were fixed in 10% formaldehyde in PBS for 25 min. Slides
were rinsed in PBS and then permeabilized in 0.2% Triton
X-100 in PBS for 5 min. Slides were rinsed in PBS and then
exposed to equilibration buffer for 10 min. Cells were then
labeled with TdT reaction mix and covered with plastic cov-
erslips and incubated for 60 min at 37°C. Plastic cover slips
were removed and slides were immersed in 2x SSC buffer
for 15 min. After washing slides in PBS, slides were covered
in mounting medium with DAPI stain (Vectashield).
TUNEL positive cells were identified using an inverted
microscope with fluorescent imaging capabilities. Three to
five areas at random were selected and TUNEL positive
and negative cells were counted.

Statistical analysis

All statistical procedures and graphs were performed with
GraphPad Prism 5 (La Jolla, CA). Data are presented as
means + SEM. Data were compared using either a paired
I-test or a one-way analysis of variance, and significance
was set at the p < 0.05 level. When necessary, the one-way
analysis of variance was followed with appropriate post
hoc tests. A Bonferroni post hoc adjustment was used to
correct for two to three comparisons to avoid type I error.
In cases where we made more than three comparisons, we
utilized a Tukey post hoc adjustment to avoid type II
error. FSC data was analyzed using FlowJo version 8.8.6
probability binning population comparison software (Tree
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Star) using a modified Cox Chi Squared Test [T(X)]. Value
of T(X) >4 implies that the two distributions are different
with a p < 0.01.

Results

Cardiac TXA2 receptor expression and activation

Figure 1A shows mouse primary AVCMs following isola-
tion and plating. Our cardiomyocyte isolation results in a
high vyield of long, striated and quiescent cardiomyocytes
that maintain their morphology up to 48 h in culture.
Figure 1B demonstrates positive detection of TXA2R
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Figure 1 TXA2R mRNA and protein are present in AVCMs. A.
10x and 40x images of isolated AVCMs from male mice after 24 h in
culture. Cells remain in high density; maintain membrane integrity and
show clear striations associated with healthy cardiomyocytes
following 24 h in culture. B. Real-time RT-PCR of RNA isolated from
AVCMs showing the presence of TXA2R. Similar TXA2R gene expression
was also observed with HL-1 cells. Inset shows TXA2R protein from
isolated AVCMs detected by western blot. C. Representative data of

10 UM U46619-induced increases in intracellular Ca®* in cardiomyocytes
as measured by Fura-2 AM. This demonstrates that the TXA2R in
mouse AVCMs is functional and behaves similarly to our previous
reports in the rabbit [16].
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mRNA and protein from isolated AVCMs (n=2-3). We
have also observed expression of TXA2R mRNA in HL-1
cells. There was a 3.2 fold higher expression of TXA2R in
primary cardiomyocytes compared to HL-1 cardio-
myocytes using B-actin as the reference gene and 2.7
fold higher expression using GAPDH as the reference
gene. To determine if the TXA2R was functional, we
conducted calcium imaging on mouse primary
AVCMs. We have previously demonstrated that U46619
increases intracellular Ca®* in rabbit cardiomyocytes [16]
and have found that the cardiomyocytes from mice behave
similarly to U46619 treatment as to what we have previ-
ously reported in the rabbit. As expected, the representa-
tive AVCM shown in Figure 1C displayed an increase in
intracellular Ca®* and had large Ca** oscillations following
perfusion with U46619 (10 pM). U46619 also increased
calcium levels in HL-1 cells (from 0.51 + 0.2 at baseline to
1.01 £ 0.16 at the peak increase; n = 14 cells, p < 0.05).

Markers of cardiac hypertrophy with exogenous U46619
Since U46619 increases intracellular Ca** which can induce
hypertrophy, we began this series of experiments by testing
the hypothesis that U46619 treatment would induce cardiac
hypertrophy. Increasing concentrations of U46619 (0.1, 1,
5, and 10 uM) for 48 h did not increase HL-1 cell size as
measured via flow cytometry (forward scatter; FSC) [T(X)
<4, p>0.01; Figure 2A]. FGF23 was used as a positive
control, as our lab has previously shown it to induce hyper-
trophy and increase forward scatter (FSC) in the HL-1 cell
line [29]. FGF23 (35 pM) exposure for 48 h increased FSC
by 25% [T(X)=61, p<0.01; Figure 2A]. In addition,
U46619 treatment (0.1, 1, 10 uM) did not increase protein
synthesis in ventricular muscle strips Figure 2B; p > 0.05;
however, FGF23 (35 pM) exposure did result in a 14%
increase in protein content (Figure 2B; p <0.05), as we
have previously shown [29]. Moreover, we determined the
effect of U46619 on pathological gene markers of cardiac
hypertrophy in AVCMs. Twenty-four h exposure to
U46619 (0.1, 1, and 10 pM) did not result in statistically
significant changes in the expression of early growth re-
sponse 1 (EGR-1), atrial natriuretic peptide (ANP), skeletal
muscle a-actin (SkAct) or f-myosin heavy chain (f-MHC)
when compared to vehicle treated AVCMs (Figure 3;
p>0.05). We also did not observe significant changes in
f-MHC (1.14+0.07 fold), ANP (1.39+0.31 fold), or
SkAct (1.8+0.75 fold) expression in HL-1 cells after
10 uM U46619 treatment compared to vehicle (P >0.05;
n=4). This evidence does not support the hypothesis
that U46619 can directly induce cardiac hypertrophy at
these concentrations.

Exogenous U46619 induces cell death
To determine if increasing concentrations of U46619
induced cell death, we analyzed various cell death
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Figure 2 U46619 does not induce hypertrophy or increase protein synthesis. A. Flow cytometry forward-scatter (FSC-H) data was performed
on more than 10,000 live gated cells/sample (n = 3). HL-1 cardiomyocytes were treated for 48 h with vehicle, increasing concentrations of U46619
(0.1-10 uM) [T(X) <4; p > 0.01], or a positive control, FGF23 (35 pM) [T(X) =61, p < 0.01]. Results from independent experiments were normalized to
vehicle controls and averaged and show that U46619 did not increase cell size (p > 0.05) while FGF23 increased cell size compared to vehicle (p < 0.05).
B. Total protein concentration of ventricular muscle strips did not increase following 48 h treatment with U46619 (0.1-10 uM; n=8; p > 0.05), but did increase
after treatment with FGF23 (35 pM; n=5; p < 0.05). *Statistical difference from vehicle.
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assays. We did not observe an increase in LDH leakage
at 4-6 hours of 1 and 10 uM U46619 in HL-1 cells (0.8 +
0.8% and 0.4 + 0.7% respectively of total LDH; n = 3) sug-
gesting that there was minimal immediate necrosis or
membrane damage. However, using trypan blue staining,
we did observe a significant increase in trypan blue
positive cells as compared to vehicle treatment at 5
and 10 uM concentrations of U46619 after 24 h (Figure 4A;
p <0.05). To verify the trypan blue staining, we analyzed an
MTT assay of cell viability. Both 5 and 10 uM concentra-
tions of U46619 induced a loss of metabolic activity at 24 h
indicative of loss of cell viability (Figure 4B; p < 0.05). Fur-
ther, we tested the effect of high doses of U46619 on cell
death in primary AVCMs. Both 5 and 10 pM concentra-
tions of U46619 resulted in a loss of healthy striated
AVCMs at 24 h (Figure 4C; P < 0.05).

TUNEL positive AVCMs with exogenous U46619

To determine if increasing concentrations of U46619 in-
duced DNA fragmentation, we utilized TUNEL staining in
AVCMs. All cells were stained with DAPI (blue) to identify
nuclei and counterstained with fluorescein-12-dUTP (green)
at 3-OH DNA ends using the terminal deoxynucleotidyl
transferase enzyme (Figure 5A). Exposure to U46619 (5 and
10 pM) increased the number of TUNEL positive AVCMs
(Figure 5B; p <0.05). We were able to significantly reduce
U46619 induced DNA fragmentation by pre-treating
AVCMs with SQ29548 (TXA2 receptor antagonist), genta-
micin (inhibitor of IP3 formation), or 2-APB (inhibitor of
IP3 receptors) (Figure 5C; p <0.05). We also conducted
manual cell counts of viable AVCMs and found similar re-
sults to the TUNEL assay. U46619 at 10 uM reduced viable
cells by -20.3 + 1.7% compared to vehicle, which was pre-
vented by pretreatment with SQ29548 (-1.4 +3.0%%),

gentamicin (-4.3 + 6.2%*), and 2-APB (-1.2 £ 1.9%*) (n=3;
*P < 0.05 compared to U46619 treatment alone).

Discussion

TXA2 is an important inflammatory mediator and could
have significant direct actions on the heart during obes-
ity and ischemia/reperfusion to potentially promote re-
modeling and heart failure. TXA2 levels are elevated
during both myocardial ischemia and reperfusion [5,42-44]
with levels specifically increasing over 350% in the coron-
ary sinus during myocardial ischemia [5]. Additionally,
serum levels of TXA2 are known to increase in patients
with obesity by 60% [1] and during heart failure by 235%
[45]. There have been several basic science investigations
that strongly suggest that TXA2 and TXAZ2R signaling are
critically important in mediating the development of heart
failure [24,26,46-48] and inhibition of TXA2 signaling has
been shown to prevent cardiac remodeling [25] and im-
prove cardiac function [49]. Nevertheless, how TXA2R ac-
tivation may specifically promote remodeling of the heart
has not been fully elucidated. Since cardiac TXA2R activa-
tion increases intracellular calcium it is possible that TXA2
may activate hypertrophic signaling or lead to cell death.
Our current study was aimed to help elucidate and differ-
entiate the direct actions of TXA2 on the myocardium in
stimulating hypertrophy or cell death.

In order to investigate the direct effects of TXA2 on
mouse hearts, we first verified the expression and function
of TXA2Rs in AVCMs. Because the heart contains other
cell types (smooth muscle cells and fibroblasts), we tested
isolated AVCMs from mice. We found the presence of
TXA2R mRNA and protein in AVCMs. These results are
consistent with our findings in HL-1 cells, our previous
observations of cardiac TXA2R expression from rabbit
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Figure 3 U46619 does not increase gene markers associated with pathological hypertrophy. Exposing AVCMs to increasing concentrations
of U46619 (0.1-10 uM) did not increase the expression of early growth response 1 (EGR1) gene or the hypertrophy-associated genes atrial natriuretic
peptide (ANP) after 24 h when compared to vehicle (p > 0.05). Forty-eight-hour treatment with U46619, did not increase the expression of other
hypertrophy genes 3-myosin heavy chain (3-MHC) and skeletal muscle a-actin (SkAct) when compared to vehicle (n =4-5; p > 0.05). There was also
no significant increase in these genes with U46619 treatment in HL-1 cardiomyocytes.

whole heart and single cell cardiomyocytes [16], and by
others in cardiac tissue of other species [50,51]. Exposure
of the AVCMs or HL-1 cells to U46619-induced changes
in intracellular Ca®*, which is also in agreement with our
previous findings in adult rabbit cardiomyocytes [16], and
by others in neonatal rat cardiomyocytes [18,19]. In
addition to increasing the intracellular Ca>*, U46619 in-
creased the frequency of spontaneous Ca®* oscillations.
This correlates well with our previous work demonstrating
that U46619 induces arrhythmias [16] and is supported by
another study that demonstrated that U46619 was able to
increase the beating rate and chaotic activity in neonatal
rat cardiomyocytes [52]. These data provide additional
support that mouse AVCMs express TXA2Rs and that
these receptors are functional.

To test the hypothesis that stimulation of cardiac
TXAZ2Rs can induce cardiac hypertrophy, we treated HL-1
cardiomyocytes with increasing concentrations of U46619.
We found no change in cardiomyocyte cell size following
exposure to U46619 as determined by flow cytometry.
U46619 also did not alter protein synthesis, or the expres-
sion of genes associated with pathological hypertrophy,
EGR-1, ANP, SkAct, or [B-MHC. These results are

somewhat surprising given that many other Gq-protein
linked agents such as angiotensin II, norepinephrine, and
endothelin-1 have long been known to induce cardiac
hypertrophy [53,54]. However, our findings are in agree-
ment with a previous study utilizing rat neonatal cardio-
myocytes that found that U46619 treatment (1 pM) only
modestly increased the hypertrophy score (33%) and did
not increase a hypertrophy marker, ANP [27]. This was in
contrast to PGF,, (1 pM) which dramatically increased
the hypertrophy score (133%) and increased ANP expres-
sion. Our results are in contrast to Zhang et al. [26], with
the overexpressed Gh mouse that displayed increased
COX-2 and TXA2 levels. They observed an increase in left
ventricular hypertrophy, which they attributed to cardiac
TXAZ2R activation [26]. This group blocked the response
with a TXA2R antagonist, but it remains possible that
other prostaglandins such as PGF,, or other paracrine
factors may be involved in the hypertrophic response. It is
also possible that TXA2 can activate both cell death
and hypertrophy pathways and if no other factors are
present, cell death predominates. If anti-apoptotic path-
ways are activated by other factors, then hypertrophy may
be observed.
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Figure 4 U46619 increases cell death in cardiomyocytes. A. HL-1 cardiomyocytes were incubated with increasing concentrations of U46619
(0.1-10 uM) and vehicle for 24 h. U46619 increased cell death at 5 and 10 M as measured by trypan blue staining (n = 3; p < 0.05). B. HL-1 cardiomyocytes
were incubated with increasing concentrations of U46619 (1-10 uM) and vehicle for 24 h and viability was also determined by the MTT assay. A decrease
in MTT staining was noted at 5 and 10 uM U46619 which indicates a decrease in metabolism and cell viability. Data were presented in terms of increased
cell death from vehicle (n=4, p < 0.05). C. Primary AVCMs were incubated with increasing concentrations of U46619 (1-10 uM) and vehicle for

24 h (image shows AVCMs treated with 10 uM U46619). Culture plates were washed and remaining cells counted (n = 3). Rod-shaped
morphology, with clear striations were the criteria used for identifying viable cells, whereas round-shaped myocytes, loss of striation or
membrane blebbing were considered non-viable cells. D. A reduction in the number of healthy rod shaped cardiomyocytes was seen at
5and 10 uM U46619 (n = 3; p < 0.05). *Statistical difference from vehicle.
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Analyzing U46619 treatment and cell death, our data in
HL-1 cardiomyocytes showed an increase in trypan posi-
tive cells and reduced viability with an MTT assay confirm-
ing a significant increase in cell death at 24 h. Moreover,
we supported these findings in AVCMs using visual
cell counts of viable cells and also found that U46619
induced DNA fragmentation via TUNEL assay. These
effects were TXA2R mediated as we were able to pre-
vent the DNA fragmentation as well as overall cell
death with the use of the TXA2R antagonist SQ29548.
Collectively, these data convincingly show that TXA2
induces cell death.

We did not observe an increase in LDH leakage in car-
diomyocytes up to 6 h, which is in agreement with a pre-
vious study that did not observe LDH leakage by
U46619 treatment for up to 4 h in neonatal rat cardio-
myocytes [18]. This would indicate that U46619 is likely
not mediating immediate necrosis or oncosis. It is pos-
sible that the cell death observed at 24 h is mediated via
apoptosis since TXA2R activation has been shown to in-
duce apoptosis in endothelial cells [55], renal tubule cells

[56], and immature thymocytes [57]. Shizukuda and But-
trick [28] have shown that the TXA2R agonist, IBOP, in-
duced DNA fragmentation in adult rat cardiomyocytes
at 24 h similar to our findings as well as decreased AKT
activity and the authors concluded that TXA2R activa-
tion induces apoptosis. However, other mechanisms
such as autophagy have not been analyzed in association
with TXA2R activation. Therefore, additional studies will
likely be needed to confirm the precise mechanisms re-
sponsible for TXA2-mediated cardiomyocyte death.

In an effort to eliminate the TXA2-induced cell death,
we treated cells with gentamicin, 2-APB, or both drugs
in combination. Gentamicin and 2-APB were selected
for two reasons. First, TXA2R activates the Gq protein
and can stimulate PLC, leading to IP3 formation, and
subsequent increases in intracellular Ca®* in cardiomyo-
cytes [16-18]. Second, gentamicin and 2-APB have been
widely used to inhibit the formation of IP3 or block IP3
receptors respectively. Gentamicin inhibits IP3 release
by binding to and sequestering its precursor, phos-
phatidylinositol 4,5-bisphosphate [58], and has been
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Figure 5 U46619-induced DNA fragmentation is receptor mediated and inhibited with gentamicin and 2-APB. A. Image of TUNEL
positive AVCMs in culture. AVCMs were cultured in the absence of serum for 24 h during treatment with U46619 (0.1-10 pM) or vehicle and then
stained with TUNEL (green nuclei) and DAPI (blue nuclei). Cell membranes were pseudo-colored to enhance visualization (red). B. Summary data
showing increasing concentrations of U46619 (0.1-10 puM) increased the number TUNEL positive cardiomyocytes when compared to vehicle
(n=4; p<0.05). *Statistical difference from vehicle. C. Summary data showing that pretreatment with a TXA2R antagonist (5Q29548; 10 uM), IP3
inhibitor (gentamicin, 10 uM), IP3R antagonist (2-APB, 10 uM), or combined IP3 signaling inhibitors (gentamicin + 2-APB) significantly reduced the
number of TUNEL positive cardiomyocytes as a result of U46619 (10 uM) treatment (n=4; p < 0.05). *Statistical difference from 10 uM U46619.
Similar results to the TUNEL staining were also found with manual cell counts of viable AVCMs.

used both in vitro and ex vivo with other known stimula-
tors of the Gq/PLC pathway (i.e, thrombin, norepineph-
rine, angiotensin II, phenylephrine, and bradykinin) [58,59].
2-APB has been used to block IP3 receptor-induced re-
sponses by endothelin, insulin-like growth factor, adeno-
phostin, and IP3 esters themselves in cardiac myocytes
[60-64], without affecting IP3 production.

Our data clearly demonstrate for the first time that
pre-treatment with gentamicin and/or 2-APB, can sig-
nificantly reduce the number of TUNEL positive cardio-
myocytes and increase the number of viable myocytes
following treatment with U46619. These data suggest
that IP3 signaling may play a role in TXA2-mediated
death of cardiomyocytes, and nicely complement our
previous work demonstrating gentamicin and 2-APB
prevent TXA2R mediated increases in intracellular Ca**
and ventricular arrhythmogenesis [10,16]. Collectively,
our data suggests that eliminating the deleterious effects
of TXA2R signaling along this pathway should signifi-
cantly improve patient outcomes with respect to ven-
tricular arrhythmias and cardiac remodeling. Moving
forward, there is strong rationale to pursue IP3 signaling
as an active participant in the death of cardiomyocytes
and the remodeling of the heart.

Based on our and other laboratories’ previous findings
with TXA2 and the heart as well as these current findings,
we propose the following general hypothesis and model of
action for TXA2 during pathological increases in the heart
(such as that which occurs during myocardial ischemia).
Acute TXA2R activation (within seconds to minutes) may
increase intracellular calcium which can directly induce
arrhythmias as we have demonstrated in vivo [16] and we

and others have shown in vitro [16,52]. While chronic
TXAZ2R activation (hours to days) likely induces cell death
over cardiac hypertrophy. We propose that hypertrophy
associated with TXA2 observed in the Zhang et al. study
[26] may be, at least in part, an adaptive response to over-
come a loss of contractility induced by TXA2-mediated
cell death. Once cardiomyocytes have died, infiltration of
immune cells may remodel the heart and the remainder of
the cardiomyocytes likely hypertrophy in an effort to
maintain cardiac output. This is supported by a study
showing that TXA2R activation triggers immune cell infil-
tration associated with cardiomyocyte remodeling follow-
ing cell death [24]. Over time, the net effect of this
remodeling may reduce ejection fraction and fractional
shortening as typically observed during heart failure and
that has been observed in other studies [24,26]. However,
more experiments will need to be conducted to fully
understand this process and to continue to test this
hypothesis.

Given the indirect (platelet aggregation and vasoconstric-
tion) and direct (disrupted Ca2+ homeostasis, arrhythmo-
genesis, and cell death) effects TXA2 has on the
cardiovascular system, we believe that treatments aimed
at directly countering the direct effects of TXA2 may be
warranted. Currently, standard therapy recommends the
use of aspirin to reduce TXA2 levels. However, it is an
over-simplification to conclude that aspirin treatment
would eliminate the concern over TXA2’s direct effects
on the myocardium. In fact, it is estimated that almost
a third of the population is aspirin resistant [65], with
TXA2 synthesis and/or TXA2R activation being readily
detected despite aspirin therapy [66,67]. Chronic low-
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dose aspirin treatment may in some cases be harmful
since this has been shown to actually up-regulate TXA2R
expression [68], which may make patients more suscep-
tible to the deleterious effects of TXA2. Therefore, more
specific interventions (such as IP3) may be needed to pre-
vent TXA2-induced remodeling.

Conclusions

The findings of this manuscript demonstrate that TXA2
alone does not directly induce changes in cardiac hyper-
trophy, or genes associated with pathological hypertrophy.
However, we have demonstrated that TXA2R signaling is
capable of inducing cell death and DNA fragmentation.
Importantly, we provide evidence that direct cardiomyo-
cyte TXA2R stimulation of IP3 pathways may play a role
in mediating cell death in cardiomyocytes.
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