

MEETING ABSTRACT

Open Access

Functions of NO-GC1 and NO-GC2 in pain processing

Jonas Petersen^{1*}, Evanthia Mergia², Oliver Drees¹, Ruirui Lu¹, Catherine Real¹, Andreas Friebe³, Doris Koesling², Achim Schmidtko¹

From 7th International Conference on cGMP Generators, Effectors and Therapeutic Implications Trier, Germany. 19-21 June 2015

Background

Chronic pain in response to tissue inflammation (inflammatory pain) or nerve injury (neuropathic pain) is often unresponsive to currently available treatments. A large body of evidence indicates that production of nitric oxide (NO) and activation of NO-sensitive guanylyl cyclase (NO-GC) essentially contributes to the processing of chronic pain. NO-GC is a heterodimer consisting of one α subunit (α_1 or α_2) and one β_1 subunit and exists in two isoforms (NO-GC1 and NO-GC2). However, the functional role of NO-GC1 and NO-GC2 in pain processing remains poorly understood. Here, we investigated the expression of NO-GC isoforms in pain-relevant tissues (dorsal root ganglia and the spinal cord) and characterized the nociceptive behavior of mice lacking α_1 or α_2 in models of acute nociceptive, inflammatory and neuropathic pain.

Conclusion

Our behavioral data point to different and partly contrary functions of NO-GC1 and NO-GC2 in the processing of inflammatory and neuropathic pain. The expression of NO-GC isoforms in dorsal root ganglia and the spinal cord is restricted to specific neuronal and non-neuronal cell populations. It remains to be determined which targets mediate the pain-relevant effects of NO-GC1 and NO-GC2.

Authors' details

¹Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, Witten, Germany. ²Institut für Pharmakologie und Toxikologie,

Ruhr-Universität, Bochum, Germany. ³Physiologisches Institut, Universität Würzburg. Würzburg. Germany.

Published: 2 September 2015

doi:10.1186/2050-6511-16-S1-A74

Cite this article as: Petersen et al.: Functions of NO-GC1 and NO-GC2 in pain processing. BMC Pharmacology and Toxicology 2015 16(Suppl 1):A74.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

¹Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, Witten. Germany

Full list of author information is available at the end of the article

^{*} Correspondence: jonas.petersen@uni-wh.de