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Abstract

Background: Promiscuity in molecular interactions between small-molecules, including drugs, and proteins is
widespread. Such unintended interactions can be exploited to suggest drug repurposing possibilities as well as
to identify potential molecular mechanisms responsible for observed side-effects.

Methods: We perform a large-scale analysis to detect binding-site molecular interaction field similarities between
the binding-sites of the primary target of 400 drugs against a dataset of 14082 cavities within 7895 different
proteins representing a non-redundant dataset of all proteins with known structure. Statistically-significant cases
with high levels of similarities represent potential cases where the drugs that bind the original target may in
principle bind the suggested off-target. Such cases are further analysed with docking simulations to verify if indeed
the drug could, in principle, bind the off-target. Diverse sources of data are integrated to associated potential
cross-reactivity targets with side-effects.

Results: We observe that promiscuous binding-sites tend to display higher levels of hydrophobic and aromatic
similarities. Focusing on the most statistically significant similarities (Z-score 2 3.0) and corroborating docking results
(RMSD < 2.0 A), we find 2923 cases involving 140 unique drugs and 1216 unique potential cross-reactivity protein
targets. We highlight a few cases with a potential for drug repurposing (acetazolamide as a chorismate pyruvate lyase
inhibitor, raloxifene as a bacterial quorum sensing inhibitor) as well as to explain the side-effects of zanamivir and
captopril. A web-interface permits to explore the detected similarities for each of the 400 binding-sites of the primary
drug targets and visualise them for the most statistically significant cases.

Conclusions: The detection of molecular interaction field similarities provide the opportunity to suggest drug
repurposing opportunities as well as to identify potential molecular mechanisms responsible for side-effects.
All methods utilized are freely available and can be readily applied to new query binding-sites. All data is
freely available and represents an invaluable source to identify further candidates for repurposing and suggest
potential mechanisms responsible for side-effects.

Keywords: Molecularinteraction field similarities, Binding-site similarities, Drug repurposing, Side-effects, Cross-reactivity,
Promiscuity, Large-scale analysis

* Correspondence: rafael.najmanovich@umontreal.ca

1Department of Biochemistry, Faculty of Medicine and Health Sciences,
Université de Sherbrooke, Québec, Canada

“Department of Pharmacology and Physiology, Faculty of Medicine,
Université de Montréal, Québec, Canada

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40360-017-0128-7&domain=pdf
mailto:rafael.najmanovich@umontreal.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Chartier et al. BMC Pharmacology and Toxicology (2017) 18:18

Background

Molecular promiscuity can be described as the situation
in which small molecules and proteins participate in mo-
lecular interactions beyond those naturally selected or,
in the case of drugs, designed. Small molecules, even
EDA-approved drugs, are often more promiscuous than
initially anticipated as a result of the complexity of cellu-
lar environments. Experimental assays of 72 inhibitors
with 442 kinases showed that 64% of the compounds
bind 20% of kinases with an affinity threshold of 3 uM
[1]. Among these 72 inhibitors, 11 are FDA-approved
drugs. Another inter-family large-scale study with data
for 238 655 compounds and 2876 targets, showed that
promiscuity is often within the same protein family, but
also among members of different protein families [2].
Promiscuity can play a role in the appearance of side-
effects, but could also be leveraged in polypharmacologi-
cal strategies or repurposing.

Promiscuity is often perceived negatively because of
side-effects that can occur when the drug modulates the
activity of off-targets. Toxicity issues are responsible for
nearly 30% of failures in drug development programs
[3]. The side-effects associated with common off-targets
are well documented and these targets are often screened
during drug development to decrease the risks of side-
effects during subsequent development phases [4].

The predominant dogma was often one disease, one
target, one drug, where the drug had to be as selective
as possible. The increasing comprehension of metabolic
networks and their properties [5], like the redundancy of
signaling pathways, can influence the targeting strategy.
Indeed, the modulation of multiple key targets in the
network by a single therapeutic drug, a strategy termed
polypharmacology, could be more efficient than the one-
drug one-target approach [6]. The promiscuous nature
of certain drugs could therefore be leveraged for these
multi-target tactics targeting the same condition or a
different one.

Large-scale analyses of promiscuity can lead to inter-
esting discoveries and novel treatment avenues. For ex-
ample, an approved drug capable of modulating the
activity of an off-target could suggest a repurposing of
this drug. This is particularly interesting if the com-
pound is an FDA-approved drug as it could be brought
to market more rapidly and economically.

In order to exploit promiscuity, its underlying factors
must be understood more clearly. The ability of a ligand
to bind multiple targets likely depends on ligand-based
and target-based properties, as both are inter-dependent.
Ligand hydrophobicity is generally correlated with
promiscuity [7]. Haupt et al. also found a correlation be-
tween binding promiscuity and ligand flexibility [8]. In
the latter study, target binding-site similarity was also
shown to correlate with promiscuity, at least for the
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PDB structure dataset used. Environmental conditions,
post-translational modifications and target structural
plasticity are factors known to play a role in promiscuity
not only for protein-ligand, but also for protein-protein
interactions [9]. Ultimately, in order to understand
promiscuity, the cellular contexts of such interactions
must be taken in consideration [10].

The importance of both ligand and protein binding-
site features is reflected on the existence of ligand-based
and target-based methods to predict off-targets. Paolini
et al. built Bayesian classification models for 698 targets
using the structures of their ligands, obtaining a 153-fold
enrichment compared to random in the prediction of tar-
gets for such drugs [2]. Another ligand-based method, the
Similarity Ensemble Approach (SEA) [11] compares a lig-
and to ligand ensembles. The SEA method was employed
on 3665 approved or investigational drugs against 246
targets. Some predictions made were validated experimen-
tally [12]. The method was also used to find targets related
to observed side-effects for 656 drugs [13].

There are a number of target-based methods for the
detection of binding-site similarities [14]. Among these,
SOIPPA [15], CavBase [16], eMatchSite [17], IsoCleft
[10, 18] and IsoMIF [19, 20]. Such methods can be used
to predict protein function from structure [21-23],
understand promiscuity within a protein family [24, 25],
assess drugability [26], and explain the cross-reactivity of
drugs. The ability of CavBase to predict off-targets for
16 kinase inhibitors was evaluated with ROC (Receiving
Operating Characteristic) curves giving an average AUC
(Area Under the Curve) of 0.70. SOIPPA predicted off-
targets of selective estrogen receptor modulators [27]
and of torcetrapib [28] in order to explain side-effect
mechanisms. There are also inverse docking methods,
such as Target Fishing Dock [29], where a ligand is
screened against a panel of target structures and the
ones with the best scores are retained.

In the current work we perform a large-scale analysis
of binding-sites of targets for an ensemble of drugs using
IsoMIF, a method that detects molecular interaction
field (MIF) similarities between binding-sites. IsoMIF
was shown to outperform existing methods on a variety
of datasets providing a higher and more robust measure
of average AUC values across datasets [19]. The
binding-sites of drug targets are compared to cavities in
a non-redundant subset of proteins with known struc-
tures. The resulting predictions are used to generate hy-
potheses of two types. First, the new targets predicted
could represent drug repurposing avenues and, second,
they could be used to explain known side-effects of the
drugs. For the most significant predictions, molecular
docking simulations were performed using the FlexAID
algorithm [30] to determine the potential docking pose
of the drug in the potential cross-reactivity target. Poses
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of the ligand obtained by superimposing the drug
bound target on the predicted cross-reactivity target
using MIF similarities were compared to the pose ob-
tained by the docking algorithm allowing to rational-
ize the prediction by looking at potential interactions
in the target binding-site.

We provide specific examples of hypotheses regarding
repurposing and side-effect mechanisms. Furthermore,
all the data of the analyses is made available through a
web interface including PyMOL sessions representing
the detected MIF similarities and docking poses. Lists of
interesting cases, i.e. those with high levels of MIF simi-
larities and small RMSD between the IsoMIF and the
FlexAID docking poses are made available through the
interface at bcb.med.usherbrooke.ca/drugs.php.

Methods

Definition of binding-sites

Drug dataset targets

The list of ligands was obtained from the Drug and Drug
Target Mapping, an RCSB resource [31] available on the
Protein Data Bank web site [32]. This list contains all
the PDB structures crystalized with a ligand mapped in
Drugbank [33, 34]. The structure does not always repre-
sent the primary target of the drug and sometimes one
drug can have multiple targets, but a structure is
retained only if it has at least 30% sequence identity with
one of the known primary targets of the respective drug.
The list is filtered to remove structures containing RNA
or DNA structures. Each entry is named with the follow-
ing nomenclature 2ITY_IRE_2020_A_-, where 2ITY is
the 4 letter PDB code and IRE 2020 A - the PDB ligand
code, number, chain and alternate location (-’ if none)
respectively. The dataset is available for download
from our site. For simplicity, we refer to this dataset
as Drugs dataset.

Non-redundant protein structure dataset

The binding-site of every drug was compared against a
dataset of potential target binding-sites obtained from
the PISCES server [35]. This dataset represents the lar-
gest non-redundant set of structures currently known
from a sequence point-of-view according to PSI-BLAST
with a 30% sequence identity threshold. The structures
also respect certain quality criteria. They have at least a
2.0 A resolution and an R-factor of 2.0. The list contains
8016 PDB chains. The dataset is available for download
from our site. For simplicity, we refer to this dataset as
Pisces dataset.

Detection of binding-site similarities and docking
simulations

The similarities between each drug binding-site and each
Pisces binding-site were detected using IsoMIF and its
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default parameters, and a grid with 1.5 A spacing. Cav-
ities were identified using the GetCleft algorithm [36].
IsoMIF offers several advantages over existing methods
for the detection of similarities, particularly across pro-
tein families and between binding-sites that share little
or no evolutionary relationships. One notable advantage
of using IsoMIF is that it is agnostic to the nature of
amino acids lining the cavities under comparison but
instead it relies on the detection of similarities in the
interactions that are deemed favourable in particular po-
sitions in the two cavities. In the Drugs dataset, the MIFs
were defined using a 3 A threshold around ligands. For
the structures in Pisces, the top 2 largest cavities found
using GetCleft in contact with the Pisces PDB chain and
in contact with at most 250 residues were retained.
Another advantage of the IsoMIF method is that it can
handle such large cavities and still find the largest sub-
volume of MIF similarities.

For each target, two measures of binding-site similarity
are calculated by IsoMIF, the Tanimoto coefficient and
the fraction of significant MIF P robes in Common of
the query (MPC,). The Tanimoto coefficient is the same
as described in [19] and MPC, represents the fraction of
the significant MIF probes (as defined in [19]) identified
in the Drugs binding-site found similar to the MIF of
the Pisces binding-site. As opposed to the Tanimoto,
MPC, is not affected by the initial volume of the Pisces
cavity, an uncontrolled parameter in this study.

For each drug, the top targets were sorted using the
Z-score calculated for the Tanimoto coefficient and the
MPC, measure for each Drug-Pisces binding-site com-
bination. Whenever a Drug binding-site and a Pisces
cavity have a Tanimoto coefficient of similarity or MPCq
with Z-score > 3.0 (further referred as Zs), the two were
superimposed using the transformation matrix that
best superimposes the detected MIF similarities. This
allows us to obtain a rough pose of the ligand in the
Pisces cavity.

Docking simulations for targets with Z; were per-
formed using FlexAID [30]. FlexAID is a probabilistic
genetic-algorithm based method. To ensure a satisfac-
tory coverage of the search space, each simulation was
repeated 10 times with a population size of 1000 chro-
mosomes and for 1000 generations for a total of 10° en-
ergy evaluations. The RMSD between the top 25 poses
for each Drug-Pisces combination and the pose obtained
after the superimposition with the similarities detected
by IsoMIF were calculated. For each Drug-Pisces com-
bination the pose with the best RMSD and with the best
docking score was retained. Docked ligands with a small
RMSD with respect to the pose superimposed using the
binding-site similarities represent independent corrobor-
ating evidence that the ligand could bind the cross-
reactivity binding-site. Specifically, it indicates that those
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groups responsible for the conserved molecular inter-
action field similarities are also responsible for favourable
interactions with the ligand.

Drug side-effects and target data

For each drug entry, the toxicity information was ob-
tained from Drugbank when available. Also, using the
PubChem identifier of the drug, side-effects from Sider
[37] were fetched with the observed frequency when
available. For each Pisces protein, cross-referenced infor-
mation was retrieved from the Uniprot database [38].
We also provide links to Pubmed articles related to the
target, the associated diseases found on Disgenet [39],
rare diseases on Orphanet [40], metabolic pathways from
Reactome [41, 42] and gene ontology information,
namely cellular function, localisation and biological pro-
cesses [43]. A list of target-related keywords was also
retrieved from Uniprot.

Web-interface

A web interface was built to make the sorted target list
available for each drug entry. For each entry, the Drug-
bank toxicity and Sider side-effects with their frequency
is given. Side effects are sorted by frequency with a
color-code, towards red as the frequency increases. The
sequence identity between the drug-bound protein and
the primary target(s) of the drug is displayed.

For each drug entry, the Pisces targets with Z-score >
2.0 (Z,) are shown by default, although this threshold
can be defined by the user. Also, the list can be filtered
to show only human structures. The cross-referenced in-
formation is given for each Pisces target when available.
A yellow exclamation mark icon tags the reference list of
the target when the title contains one of the following
keywords: inhibit, agonist, target, drug, resistance, treat-
ment, therapy, cancer, disease, ligand, pathogen, toxic,
side effect, adverse effect. The keywords are (put) in bold
in the title of the reference for easy identification.

For each target in the Z3 category, a PyMOL session
showing the similarities detected by IsoMIF can be
downloaded and a PNG image can be seen showing the
color-coded similarities detected. Furthermore, for Zj
category targets, the results of the docking simulations
are shown and a PyMOL session can be downloaded,
similar to the one with the MIF similarities, but with the
docking pose in the target binding-site.

Results

Statistics of the datasets

The Drugs dataset contained 400 binding-sites for which
the structures had an average sequence identity of 69%
+25% to the primary targets. These 400 entries repre-
sent binding-sites of 186 unique drugs. Redundant drugs
include acetazolamide (14 entries), tretinoin (7 entries)
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as well as zanamivir, progesterone, sirolimus, liothyro-
nine, vorinostat, estradiol and tetrahydrobiopterine rep-
resented in 6 entries each (Additional file 1: Table S1).

The final Pisces dataset contains 14082 cavities with
39 residues on average (Additional file 1: Figure S1).
These 14082 cavities represent 7633 different PDB en-
tries, 3539 Pfam families, 7895 Uniprot entries, and
1445 different organisms with a total of 2007 binding-
sites from Homo sapiens proteins.

Drugbank toxicity information was available for 262 of
the 400 drug entries and Sider side effects for 241 of the
400 entries. There was on average 163 side effects per
Sider entry. Additional file 1: Table S1 shows the list of
unique ligands with the number of representative
binding-sites in the Drugs dataset, and the number of
side recorded side effects.

Binding-site similarity and docking simulations

More than 5,632,800 binding-site comparisons were per-
formed using IsoMIF. For all the Drugs binding-sites,
the number of targets predicted with Z, and Z; were
168,906 and 9845, respectively. A total of 9845 docking
simulations were performed (for each Drug/Pisces com-
bination with Z3) among which 4764 (48.4%) had a top
pose with an RMSD of at most 3.0 A. This number de-
creases to 2923 (29.6%) for an RMSD threshold of 2.0 A.
In such cases the binding-site MIF similarities likely rep-
resent important interactions responsible for binding in
the primary target and that are conserved in the poten-
tial cross-reactivity target. The targets predicted for each
drug with Z; and with an RMSD of at most 3.0 A or
2.0 A are given in two Excel files available as supplemen-
tary data containing respectively 4764 (154 unique drugs
and 1410 unique potential cross-reactivity protein tar-
gets) and 2923 (140 unique drugs and 1216 unique po-
tential cross-reactivity protein targets, representing
approximately 15% of all entries in the Pisces dataset).
Additional file 1: Table S2 shows each of the 400 Drug
entries sorted by number of predicted targets at Z3 and
the number of ligand heavy atoms (i.e., non-Hydrogen
atoms) of the drug, the number of Pfam families repre-
sented by the predicted targets, and the number of refer-
ences with at least one special keyword in the title.
Whereas we only discuss a few such targets in this work,
the online repository represents a valuable source of data
for further analyses and a source of hypotheses to be
tested experimentally.

Potential cross-reactivity targets predicted at least
twice for the same drug using different query entries are
listed in Additional file 1: Table S3. For simplicity, only
ligands represented in at least 4 different PDB structures
are listed. The number of times the target is predicted
with a Z-score higher than 3.0, 2.5 and 2.0 is given with
the name of the target protein and the Drug entry ID for
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which the target is predicted with Z;. Looking at the
predicted targets for the top 3 most common Drugs,
namely acetazolamide, tretinoin and zanamivir, at least
one of their primary targets is predicted by IsoMIF, them
being carbonic anhydrase 2, retinoic acid receptor RXR-
beta and neuraminidase, respectively. For 14 query
binding-sites of the Drugs dataset bound to acetazol-
amide, carbonic anhydrase 2 is predicted 8 times with
Z3, and 13 times with a Z,. For 7 query binding-sites
bound to tretinoin, the retinoic acid receptor RXR-beta
is predicted 3 times with Z3 and 7 times with Z,. Neur-
aminidase is predicted with Z; for all six query binding-
sites of zanamivir. Additional file 1: Table S4 shows the
554 most common binding-sites, that is, those predicted
with Z3 for at least 5 Drug entries. SEC14-Like protein
3, mineralocorticoid receptor, ring finger protein 4 and
leukotriene C4 synthase were predicted 78, 60, 44 and
43 times, respectively, with the Z; threshold. The spe-
cific z-score values for each of the drugs above and im-
ages of the detected similarities can be found in the
online depository.

Non-polar interactions are over represented in promiscuous
binding-sites

Figure 1 shows the fraction of MIFs represented by each
probe type for the 14082 Pisces binding-sites and for the
subset of 554 among these that were most commonly
found to be similar to query binding-sites. These com-
mon binding-sites have significantly more fractions of
hydrophobic and aromatic probes than the average frac-
tion in all binding-sites (parametric p-value<2.2 x 10
~16). Other probes are on average less represented in the
subset of ‘promiscuous’ binding-sites.
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Ligand promiscuity
There are 25 targets in average predicted per Drug entry
in the Z; category. Among ligands that have the most
predicted targets (Additional file 1: Table S2), are etha-
nol, acetohydroxamic acid, dichloroacetic acid and sali-
cylic acid. These are small in terms of number of heavy
atoms. Thus, it is more likely to detect binding-sites that
contain atomic arrangements that satisfy the limited
number of favourable interactions to bind such ligands.
The two measures of binding-site similarity used have
their merits and disadvantages. For a fixed detected
number of common probes between query and target
search cavities, the Tanimoto coefficient is affected by
differences in the volume of cavities whereas the MPCq
(measure) is not affected. Biologically, the two similarity
measures are relevant, but MPC, is used to identify
cases where the Tanimoto coefficient would fail to yield
a high similarity score because of the binding-site vol-
ume difference. This difference would occur especially if
GetCleft identifies one large cavity composed of small
interconnected cavities as shown below, but these were
filtered out using the 250 residues cavity size limit. Na-
proxen with 17 heavy atoms is the next ligand identified
in Additional file 1: Table S2 with 122 targets predicted
at Zs. Naproxen is a nonsteroidal anti-inflammatory
drug capable of binding only via aromatic and nonpolar
interactions [44]. Its primary target, Prostaglandin-
endoperoxide synthase 2, was identified at a low rank of
3687 with a weak Z-score of 0.55. The reason behind
this low similarity is that the naproxen binding-site on
the primary target was part of a large cavity that was fil-
tered out (Fig. 2) by the 250 residues size filter. This
shows that, in some cases, biologically relevant binding-
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Fig. 1 Fraction of MIFs for the common Pisces entries. Boxplots showing the fraction of the MIFs represented by the 6 probe types in the 14082
Pisces binding-sites compared to the ones measured using only the 554 most commonly predicted similar target binding-sites for each probe
type (marked by *). HYD: Hydrophobic, ARM: Aromatic, DON: Hydrogen bond donor, ACC: Hydrogen bond acceptor, NEG: Negatively charged,
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Naproxen

but was excluded because of its size
A\

root

Fig. 2 Cavities of Prostaglandin-endoperoxide synthase 2 (PDB 3NT1). a The two cavities 3NT1_2 (pale yellow) and 3NT1_3 (orange) define the
two binding-sites of this protein in the Pisces dataset. The bound naproxen is also shown. b Cavity 3NT1_1, in red, covers the naproxen binding-site,

3NT1 - Chain A and B

sites were excluded through the filtering process. The next
most promiscuous ligand in Additional file 1: Table S2 is
meloxicam, another nonsteroidal anti-inflammatory drug
with 110 predicted targets. As in the case of naproxen, the
similarities identified are mostly hydrophobic in nature,
sometimes with aromatic probes and hydrogen bond
donor probes.

The similarities of other promiscuous ligands in
Additional file 1: Table S2 also seem to be mainly hydro-
phobic and this is consistent with previous observations
that promiscuity correlates with hydrophobicity [7, 45].
This correlation between promiscuity and hydrophobicity
seems to hold for targets as well. While the set of targets
of the most promiscuous ligands do not necessarily over-
lap the set of the most common targets found for all li-
gands (Additional file 1: Table S4), the most commonly
predicted targets have binding-sites that are significantly
more hydrophobic and aromatic than the average, as
illustrated in Fig. 1.

Target promiscuity

Among common predicted targets, the mineralocorticoid
nuclear receptor (MR), represented by binding-site 4PF3_2,
is a receptor expressed in many human tissues that binds
steroid hormones, more specifically mineralocorticoids and
glucocorticoids. Aldosterone is the principal hormone that
binds to this receptor. The MIF of 4PF3_2 (Fig. 3) is mea-
sured in the substrate binding-site where the compound
6-[1-(2,2-difluoro-3-hydroxypropyl)-5-(4-fluorophenyl)-
3-methyl-1H-pyrazol-4-yl]-2H-1,4-benzoxazin-3(4H)-one
is bound in the crystal structure 4PF3 [46]. The MIF con-
tains hydrogen bond donor and acceptor probes as well as
hydrophobic and aromatic probes. Table 1 shows the most
commonly predicted ligands for the MR for which the
docking simulations yielded an RMSD of less than 3 A
with the pose predicted by IsoMIF. Progesterone is found
6 times, tretinoin 5 times, and testosterone, spironolac-
tone, mifepristone, estradiol and colchicine are predicted

3 times each. The structures of these ligands are shown in
Additional file 1: Figure S2. The majority are steroid hor-
mones or structurally similar molecules including approved
drugs. For example, spironolactone is an aldosterone
antagonist and mifepristone is a glucocorticoid antag-
onist. From the 55 predictions, 3 predictions of pro-
gesterone and 2 of spironolactone were trivial as the
query binding-sites of these ligands in the Drugs
dataset were derived from structures of MR bound to
these ligands.

Among the top common targets (Additional file 1:
Table S4), rhodopsin II with two binding-sites, 1H2S_6
and 1H2S_7, is predicted 90 and 76 times for the two
cavities analysed, respectively. These two cavities are at
the surface of chain B (cyan cartoon in Additional file 1:
Figure S3), which is responsible for transferring the
photo signal into the cytoplasm. These sites are mainly
occupied by hydrophobic and aromatic probes as well as
donor and acceptor probes. Rhodopsin II is a membrane
protein and both cavities 1H2S_6 and 1H2S_7 are not
solvent exposed. It highly unlikely that the cavities are
biologically relevant or that they may bind so many dif-
ferent ligands. By the nature of hydrophobic cavities, the
smaller number of favourable interactions differentiating
such cavities lead to an increase in the detection of
similarities.

Drug repurposing candidates

Binding-sites with statistically significant high levels of
similarity (Z3 cases) that can accommodate the drug based
on low RMSD docking poses are a source of potentially
interesting drug repurposing hypotheses. Predictions
made multiple times for the same drug using different
query binding-sites (Additional file +1: Table S3) increase
the strength of the prediction as these implicitly account
for both variations in binding-site amino-acid composition
as well as conformational variability. Some of these cases
are discussed in what follows.



Chartier et al. BMC Pharmacology and Toxicology (2017) 18:18

Page 7 of 16

4PF3_2 - Mineralocorticoid receptor

Fig. 3 MIF of the mineralocorticoid receptor in the 4PF3_2 binding-site. The MIF is defined in the substrate binding-site and is composed of
hydrophobic (cyan), aromatic (orange), hydrogen bond donor (blue) and acceptor (red)

Acetazolamide as a Chorismate pyruvate lyase inhibitor

Acetazolamide is represented by 14 binding-sites in the
Drugs dataset. The Pisces target 1TT8_6 was predicted
for 8 of the 14 binding-sites with a Z3 threshold and 13
times with a Z, threshold. Target 1TT8_6 represents the
chorismate pyruvate lyase protein, present in Gram posi-
tive bacteria such as Escherichia coli and Mycobacterium
tuberculosis and is essential for CoQ biosynthesis, an es-
sential cofactor [47]. Fig. 4 shows the superposition of
the structures and the detected IsoMIF similarities be-
tween a binding-site of acetazolamide (1RJ6_AZM400A-)
and 1TT8_6. The figure also shows the ligand poses
predicted by IsoMIF (cyan) and FlexAID docking (sal-
mon) with an RMSD of 1.62 A. Interestingly, despite

Table 1 Ligands predicted for the mineralocorticoid receptor

(4PF3_2)

Ligand® Predictions
Progesterone 6

Tretinoin 5
Testosterone, Spironolactone, Mifepristone, Estradiol, 3
Colchicine

Meloxicam, Fluconazole, Diethylstilbestrol, Betamethasone 2

Tadalafil, Podofilox, Pentoxifylline, Papaverine, Liothyronine, 1
Levonorgestrel, Hydrocortisone, Fluticasone furoate,
Flurbiprofen, Fludrocortisone, Exemestane, Estrone, Estriol,
Cyproterone acetate, Celecoxib, Calcitriol, Caffeine,
Bicalutamide, Bexarotene, Atovaquone, Alitretinoin

“Ligands predicted for the target binding-site 4PF3_2 with Z; for which the
RMSD is at most 3 A

different CATH structural folds (3.40.1410.10 for 1TT8
and 3.10.200.10 for 1R]6), many corresponding residues
on each structure are found to produce similar MIFs
yielding a Tanimoto coefficient of 0.4915 (Z-score
3.3802). Binding-site residues LEU137 and PRO159
(1TT8) as well as LEU131 and VAL121 (1R]J6) yield
hydrophobic similarities, GLN7 (1TT8) and THR200
(1IRJ6) result in Hydrogen-bond donor similarities and
histidine 2 and 94 in 1TT8 and 1RJ6 respectively, produce
negatively charged probe similarities. For clarity, not all
corresponding residues in the vicinity of the binding-sites
are shown. The PyMOL session can be downloaded from
the online interface. Whereas the results above point to
the possibility that acetazolamide might serve as an anti-
biotic, the affinity, the effect of acetazolamide on the bio-
synthesis of CoQ and ultimate its potential as an antibiotic
remains to be validated experimentally.

Raloxifene and CviR

A second example of repurposing involves a rare patho-
gen, Chromobacterium violaceum, a Gram-negative an-
aerobic coccobacillus. This pathogen is found in tropical
and subtropical regions and was the cause of many
deaths in different regions of the globe [48]. C. violaceum
has a quorum sensing mechanism that allows the activa-
tion of virulence genes when the population reaches a
certain density. It is a communication mechanism that re-
quires a chemical signal perceived by receptors like LuxR-
CviR in the case of C. violaceum. The binding of the signal
molecules induces homo-dimerization allowing DNA
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1TT8

Fig. 4 Similarities between carbonic anhydrase and chorismate pyruvate lyase (a) Both structures have different folds and are superimposed
using the MIF similarities. b The IsoMif pose (cyan) and the FlexAlD pose (salmon), RMSD of 1.62 A. ¢ Similarities for hydrophobic (cyan), aromatic
(orange), donor (blue), acceptor (red) and negative charge (magenta). Large spheres represent probes of 1RJ6 and small ones of 1TT8
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binding and activation the RNA-polymerase. Antagonists
of the LuxR-CviR are susceptible to inhibit the quorum
sensing mechanism [49]. Raloxifen is a selective estrogen
receptor modulator commercialized under the name of
Evista and is represented by 4 binding-sites in the drugs
Dataset. Table 3 shows that the CviR quorum sensing
binding-site (3QP4_1) is a target predicted twice with Z;
and twice with Z-scores of 2.99 and 2.82. This is a predic-
tion that wouldn’t be possible with sequence or structure
based methods as the two unrelated proteins and have dif-
ferent folds with CATH codes 1.10.565.10 and 3.30.450.80
for the estrogen receptor and CviR respectively.

Table 2 shows the similarities between the binding-
sites of raloxifen and 3QP4_1 and the results of the
docking simulations only for the IsoMIF predictions
with Z;. The RMSD varies from 1.88 to 4.84 A and the
CF from -103.69 to -238.85. Predictions of raloxifen
with a high IsoMIF score and low docking RMSD sug-
gest that raloxifen could bind to the 3QP4 1 binding-
site and compete with the signalling molecules, thereby

potentially inhibiting the quorum sensing mechanism of
gram-negative bacteria. Figure 5 shows the structure of
1ERR_RAL_600_A_- and 3QP4_ 1 superimposed using
the MIF similarities and the poses of IsoMIF and Flex-
AID (1.88 A). Fig. 6 shows the similarities of different
probe types and their underlying residues in both struc-
tures. Many corresponding hydrophobic residues create
hydrophobic probe similarities mainly in one extremity
of raloxifen (Fig. 6a). A pair of tryptophan residues and
a pair of tyrosine residues can engage in stacking inter-
actions with the ligand and two corresponding methio-
nine residues suggest sulfur-m interactions. Tyrosine 88
of the CviR receptor does not seem to have a residue that
is in a geometrically corresponding position in the
query 1ERR binding-site, but could engage in face-to-
face stacking with raloxifen (Fig. 6b) after a slight
side-chain rearrangement.

Two aspartates ASP97 and ASP351 could engage in a
Hydrogen-bonds with the nitrogen atom of raloxifen
(Fig. 6¢). Two hydroxyl groups at opposite extremities of

Table 2 Drugs dataset binding-sites bound to raloxifen found similar to 3QP4_1

Drugs binding-site Name of the structure Tanimoto Zy Pose? RMSD A CF
1ERR_RAL_600_A_- Estrogen receptor 0.3679 3.26 Best RMSD 1.88 —103.69
Best CF 297 —225.67
TQKN_RAL_600_A_- Estrogen receptor beta 0.3629 3.07 Best RMSD 1.99 —207.33
Best CF 4.84 —238.85
20XS_RAL_600_A_- Estrogen receptor 0.3542 2.99 - - -
2JFA_RAL_600_A_- Estrogen receptor 0.3449 282 - - -

?Indicates if the RMSD and CF information given in the adjacent columns are from the pose with the best RMSD or with the best docking score (CF)
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1ERR_RAL_600_A_- Estrogen receptor
3QP4_1 CviR Transcriptional regulator

Isolif - FlexAlD (RMSD 1.88A)

Fig. 5 Superimposition of the estrogen receptor and CviR receptor. a The two structures of different folds are superimposed using the
MIF similarities. b A surface representation of 3QP4 shows the deep pocket where raloxifen would bind in CviR. ¢ The pose predicted by

IsoMIF (cyan) and FlexAID (salmon) and d the similarities identified by IsoMIF are shown
A\

N
Raloxifen: Isolif - FlexAID (RMSD 1.88.&)
a ILE153 JALAss LEU72 b TYR526 vRo
ILE9® META421
LEU539
N LEU85
LEU536 LEU384 PHE404
MET388
MET89
ASN77
ASN92
GLN95 LEU76
°0 HIS524
VAL75
ARG394
Fig. 6 Similarities between the estrogen receptor and the CviR receptor. a Hydrophobic similarities are shown in cyan, b aromatic in
orange, ¢ hydrogen bond donor in blue and positive charge in green and d hydrogen bond acceptor in red
- J




Chartier et al. BMC Pharmacology and Toxicology (2017) 18:18

raloxifen are stabilized by ARG394 and HIS524 in the
binding-site of 1ERR and the corresponding interactions
in CviR (3QP4_1) could be made in different ways
(Fig. 6d). First, with a Hydrogen-bond involving the
backbone amine of GLN95. Second, with a hydrogen
bond network involving the carbonyl backbone of MET89,
the side chain of ASN92 and potentially a water molecule.
On the other side, a hydrogen bond could be made with
the backbone of VAL75 and LEU76 or via the side chain
of ASN77. In the latter scenario, the side-chain would re-
quire to undergo a slight reorientation to optimize con-
tacts upon binding. The poses and side chain arrangement
might not represent the ideal conformations as the dock-
ing simulations with FlexAID were performed by consider-
ing only the ligand structure as flexible.

Molecular mechanisms responsible for side effects

The detection of binding-site similarities towards the
identification of potential candidate cross-reactivity targets
for drugs that may be responsible for observed side-effects
required matching listed side-effects with equivalent
terms associated to the potential cross-reactivity targets
through manual inspection. As such, only a few cases
are described here.

Zanamivir

This drug is an antiviral agent used to treat and prevent
influenza. Cardiovascular side effects, including ar-
rhythmias, have been reported spontaneously during
post-marketing experience. For the query binding-site
1A4G_ZMR_466_B_- bound to zanamivir, the potential
cross-reactivity target binding-site 3HFE_1 is found at
rank 19, with a Tanimoto coefficient of 0.3475 (Z-score of
2.6039). The best docking pose of zanamivir on KCNQ1
gives an RMSD of 2.24 A suggesting that the drug could
potentially bind the cross-reactivity binding-site. This
structure represents the tail domain of potassium voltage-
gated channel KCNQ1 involved in repolarization of car-
diac cells and trans-epithelial potassium secretion in the
internal ear. Mutations of this gene are associated with the
Jervell and Lange-Nielsen syndrome and the Romano-
Ward syndrome, recessive and dominant autosomal vari-
ants of familial long QT syndrome, respectively, familial
atrial fibrillation, and familial short QT syndrome. These
rare diseases are all characterized by cardiac arrhythmias.
Another mutation in a gene of the same family, KCNQ4,
was recently associated to deafness and hearing loss [50].
These associations suggest that the interaction of
zanamivir with KCNQ1 (3HFE_1) and perhaps other
members of this family such as KCNQ4 could cause
the observed side effects. In particular, a single threonine
to glutamine amino-acid variation differentiates the region
where our analysis suggests that zanamivir could bind to
KCNQI1 and that in KCNQ4. The similarities identified
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for the positively (A) and negatively (B) charged probes
and the location of the 3HFE_1 binding-site relative to the
whole structure are shown in Fig. 7. The 3HFE structure
shows the biological assembly of the domain tail of the po-
tassium channel. The observed side effects of zanamivir
could result from the disruption of the assembly of the
complex. This could alter potassium flow across the mem-
brane affecting the its repolarization and possibly leading
to the observed arrhythmias.

Captopril

The query used is the entry 2X8Z_X8Z_1615_A_- of the
drugs dataset represents the angiotensin converting en-
zyme (ACE) bound to captopril. The reported side ef-
fects of captopril include pancytopenia, a deficiency of
red blood cells (anemia), white blood cells (leukopenia),
and platelets (thrombocytopenia) [51]. The drug was
also associated to alopecia [52], cardiac arrest [53], cere-
brovascular accidents [54], and arthralgia [55]. These
side effects, among others, are retrieved from the Sider
database and appear underlined in red in Fig. 8.

Table 3 shows the top 4 human targets with the high-
est MIF similarity to ACE. Interestingly, some of these
potential cross-reactivity targets are known to be associ-
ated to conditions that have phenotypes similar to the
observed side effects of the drug. For example, dihy-
droorotase, found at rank 2 (4C6E_2, Tanimoto coeffi-
cient 0.3297, Z-score 3.08), is a protein associated to
congenital hypoplastic anemia, an inborn condition char-
acterized by deficiencies of red cell precursors that some-
times also includes leukopenia and thrombocytopenia.
Another potential cross-reactivity target found at rank 3
(1IFV1_7, Tanimoto coefficient 0.3248, Z-score 3.01) is the
alpha chain of the major histocompatibility complex. The
data from Orphanet show that the protein is associated to
the Graham Little-Piccardi-Lassueur syndrome, which is a
disease characterized by cicatricial alopecia of the scalp and
noncicatricial alopecia of the axilla and groin. The target is
also associated to arthritis. A screenshot of the online inter-
face for the hypothesized cross-reactivity target 1FV1_7, is
shown in Fig. 9. The figure also displays how the identified
molecular interaction field similarities can be visualized dir-
ectly from the interface. Finally, tankyrase-2 is found at
rank 4 (4PNL_5, Tanimoto coefficient 0.3214, Z-score 2.96)
and is associated to cardiovascular diseases and cerebrovas-
cular disorders.

Table 3 also shows the docking results for the top hits.
The best RMSD of the top scored poses predicted by
FlexAID for dihydroorotase, the major histocompatibility
complex alpha chain and tankyrase-2 are 2.38 A, 1.47 A
and 1.25 A, respectively. For these three cross-reactivity
targets, Fig. 10 shows the docking pose obtained by Flex-
AID superimposed to the pose obtained after the super-
imposition of the MIF similarities (Fig. 10).
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3HFE_1 - Voltage-gated potassium channel
1A4G - Neuraminidase + zanamivir

a GLU116
GLU225
GLU274
°
®
GLU356 o®
ASP148 ASPe03

and the identified similarities

Fig. 7 Similarities between the neuraminidase query binding-site and potassium voltage-gated channel 3HFE_1, the potential target. a Positively
and b negatively charged probe similarities. ¢ Surface and d cartoon representation of a subunit of the channel showing the binding-site of zanamivir

b

ARG222
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Discussion

The results above highlight some examples obtained
from the large-scale analysis of binding-site similarities
between drug targets and a non-redundant set of known
protein structures. Whereas these examples describe po-
tential drug repurposing candidates or potential molecu-
lar explanations for observed side-effects, a number of
caveats are in place. First and foremost, the computational
data suggest molecular interactions between small-
molecules and proteins but as computational hypotheses,
must still be validated experimentally.

In the case of drug repurposing hypotheses, the bio-
availability of the drug needs to be determined to assess
the capacity of the drug to interact with the target. Yet,
even if the specific molecule in question may not itself
be a good candidate for drug repurposing due to bio-
availability issues, it may open novel venues to inhibit
the new target.

In the case of hypotheses of mechanisms that explain
side-effects, in addition to bioavailability considerations,

it is likely that the proposed molecular mechanism is
only partially responsible for the side-effect. This seems
likely to be so for side-effects that tend to be common
and, thus, more likely to arise from several different mo-
lecular mechanisms.

From a technical point of view, the fact that some li-
gands are represented by multiple entries in the Drugs
dataset can compensate for certain limitations of
binding-site similarity detection methods, specifically
conformational differences between the structures of the
different binding-sites or the existence of different ligand
binding modes. If the performance of ligand-based drug
target prediction methods increases when ligand ensem-
bles are used, as in the SEA method, target-based
methods that use multiple binding-sites of the same
drug could, in principle, yield a higher true positive hit
rate when using multiple inputs. Some entries of the ori-
ginal Drugs dataset from RCSB contained unbound
structures of primary targets or primary target homologs
that were not included in the present work, mainly
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3 2X8Z X8Z_1615_A_- ANGIOTENSIN CONVERTING ENZYME Captopril Q10714 Drosophila melanogaster B Targets

@ Toxicity from DrugBank

Symptoms of overdose include emesis and decreased blood pressure. Side effects include d: rash (usually mac ), taste alterations, hypotension, gastric irritation,

cough, and angioedema.
@ Side effects from SIDER PubChem ID: 44093

Dizziness 22% Cough 15% Pharyngitis 11% Tension 0% pm Rash 0% pm Arthralgia 0% pm Patent ductus arteriosus 0% pm Skull hypoplasia 0% pm Dermatitis 0%
——

pm Confusional state 0% pm Irreversible renal failure 0% pm Somnolence 0% pm Pulmonary eosinophilia 0% pm Anuria 0% pm Muscular k 0% pm Musculoskeletal

discomfort 0% pm Muscle contracture 0% pm Nervousness 0% pm Myasthenia 0% pm Myalgia 0% pm Hypotension 0% pm Ataxia 0% pm Oligohydramnios 0% pm Body

temperature increased 0% pm Microsomia 0% pm Pregnancy 0% pm Nephritis interstitial 0% pm Eosinophilia 0% pm Renal failure chronic 0% pm Rhinitis 0% pm Vasculitis 0%

pm Microcephaly 0% pm Feeling abnormal 0% pm Tubulointerstitial nephritis 0% pm Nephritis na Airway obstruction NOS na

Peptic ulcer na Pollakiuria na Acidosis

na Cardiac arrest na Tachycardia na Necrosis na Weight decreased na
——

na Pemphigus na Polyuria na

syndrome na Aphthous stomatitis na Pemphigoid na Cholestasis na

na Angioedema na Anorexia na Hypovolaemia na
na Gastric irritation na Orthostatic hypotension na Protein
na Gastrointestinal pain na Dry eye na Nephrotic syndrome na

mouth na Ulcer na

na Jaundice na Antinuclear antibody positive na Renal failure na
na Blister na
na Blood pressure normal na Anaemia na Stomatitis na
@ Similarity to primary targets

This entry has:

45% sequence identity to primary target A onverting y

na Diabetes mellitus na Agranulocytosis na Scald na Nausea na Hyponatraemic na
Lymphadenopathy na Renal failure acute na Drug interaction na
na Pancytopenia na Glossitis na Hepatitis na Diarrhoea na Blood pressure increased na Pancreatitis na
Pallor na Shock na Fatigue na Proteinuria na Bronchospasm
Flushing na Hepatocellular injury na Alopecia na Urine output increased na
urine present na Rales na Hyponatraemia na Serum potassium increased na Anaphylactoid reaction
Red blood cell sedimentation rate increased na Tongue ulceration na Jaundice cholestatic na
Dermatitis bullous na Renovascular hypertension na Angina pectoris na Dysgeusia na Palpitations na Blood potassium increased na Chest pain na
injury na Obstructive airways disorder na Loss of libido na Constipation na Hypotensive na Thrombocytopenia na Thermal burn na Vision blurred na
Paraesthesia na

Erectile dysfunction na Vomiting na Laryngeal oedema na Syncope na Ageusia na

(P12821) of Captopril

Fig. 8 Entry 2X8Z_X8Z_1615_A_- in the online interface showing side effects retrieved from Sider. Hyperlinks bring to external resources: the
page of the PDB structure on the RCSB website, Pubmed showing articles where the name of the protein appears in their title, Drugbank page of
the drug, Uniprot page, and the side effect resource in Sider. The Targets' link on the top right leads to the sorted list of predicted targets

ytic ia na phylactic shock na Photosensitivity reaction na Hepatic necrosis

Ill-defined disorder na Insomnia na Epigastric discomfort na Photosensitivity na Malaise
Dermatitis exfoliative na Hyperkalaemia na Traumatic liver injury
Serum sickness na Erythema multiforme na Stevens-Johnson
na Cerebrovascular accident
Gynaecomastia na Persistent dry cough

Dyspepsia na Dry
Liver
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Headache na Hallucination na Oliguria na Abdominal pain na Diabetic na Dyspnoea

Decreased appetite na Pruritus na Asthenia na Discomfort na Neutropenia
—

because the methodology used to define the drug
binding-sites required a bound ligand. However, it must
be stressed that this is entirely an experimental design
choice in the present study and not a requirement to
perform binding-site comparisons with IsoMIF. Indeed,
whole cavities as defined by GetCleft [36] could have
been used.

Because of the non-redundant nature of the Pisces data-
set, each binding-site is represented by a single structure.

Table 3 Top 4 predicted Homo sapiens targets for captopril

However, including multiple binding-sites from different
structures of the same target in the Pisces dataset could
be beneficial as conformational changes between struc-
tures can affect the detection of similarities. Furthermore,
In order to filter out large cavities, a limit of 250 residues
in contact with a cavity was used. The reason behind this
threshold is that large cavities generate MIFs with many
grid vertices and, thus, large association graphs during the
search step, increasing significantly the computational

Rank Pisces entry Protein Tanimoto Zy Pose? RMSD A CF

1 2VIF_2 Suppressor of cytokine signalling 6 0.3503 341 Best RMSD 1.08 —66.59
Best CF 3.86 —187.56

2 4C6E_2 Dihydroorotase 03297 3.09 Best RMSD 238 -110.18
Best CF 742 —281.23

3 1FV1_7 Major histocompatibility complex alpha chain 0.3248 301 Best RMSD 147 —156.46
Best CF 438 —20851

4 4PNL_5 Tankyrase-2 03214 2.96 Best RMSD 1.25 —153.22
Best CF 483 —209.89

“Indicates if the RMSD and CF information given in the adjacent columns are from the pose with the best RMSD or with the best docking score (CF)



Chartier et al. BMC Pharmacology and Toxicology (2017) 18:18 Page 13 of 16

3 1FV1 7 0.3248 0.411 MAJOR HISTOCOMPATIBILITY  COMPLEX |Homo sapiens 030154 11080454 ‘GO Q30154 PN ‘ PyMOL ‘
PF01669 3.0123 0.4483 ALPHA CHAIN P02686

FlexAID Docking ®
Pose: 6_4 RMSD: 1.471 CF: -156.46307 bestRMSD [100% done] &PyMOL
Pose: 1_0 RMSD: 4.380 CF: -208.51420 bestCF [100% done] &PyMOL
References ® A\

- Gene i di: @
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Fig. 9 Cross-reactivity target 1FV1_7 identified with Drugs dataset entry 2X8Z_X8Z_1615_A_-. For each off-target, the Tanimoto coefficient and
MPC, are given with their Z-score. When available, cross-referenced information can be clicked to expand (Pubmed references, Disgenet, Orphanet,
Reactome and Keyowrds in this example). Hovering the mouse on the PNG hyperlink shows a glimpse of the similarities identified by IsoMif and the
PyMOL session can be downloaded for the similarities alone and next to the docking results (that contain, in addition to similarities, the docking pose
predicted). The information for this off-target is available at the http://bcb.med.usherbrooke.ca/drugs.php?id=2X82_X821615A-#1FV1_7

time necessary to perform clique detection. More import-
antly, the whole volume of such large cavities most prob-
ably do not represent biologically-relevant binding-sites
while sub-regions of these large cavities do. However, as
we dont know in principle where the potentially
biologically-relevant subsection of a cavity is, the fact that
IsoMIF can handle such large input cavities without affect-
ing the detection of similarities is an advantage in the
present study. While this filtering procedure helps us to
decrease the computational time required for the detec-
tion of similarities and increase the signal to noise ratio, it
could exclude potentially interesting binding-sites. Target

datasets like the Potential Drug Target Database (PDTD)
[56], which contains more than 1100 PDB structures with
cross-referenced information or scPDB [57, 58] which
represents more than 8000 druggable binding-sites or
PDID [59], a database representing 3746 druggable human
protein structures could be used in a combined or alterna-
tive fashion to the Pisces dataset. Considering that
binding-sites are more conserved than other regions of
proteins [14] and that the Pisces dataset includes struc-
tures of proteins for which there are no human ortholog
structures available, the use of the Pisces dataset may help
increase the coverage of unique binding-sites. High levels

4C6E - 2.38A

1FV1 - 1.47A

4PNL - 1.25A

‘ H-bond donnor

O Hydrophobic
O Aromatic

o Positive charge

‘ H-bond acceptor ° Negative charge

Fig. 10 Comparison of captopril docking and ACE MIF similarity based ligand superimposition for the top three captopril cross-reactivity targets.
The RMSD is that between ligand poses predicted by FlexAlD (salmon) compared to those obtained upon the superimposition of the target
and potential cross-reactivity target using the MIF similarities obtained with IsoMIF (cyan). The color-coded similarities identified by IsoMIF for
specific probe types are shown as spheres. Pairs of large and small spheres represent corresponding (similar) probes in the query and target
binding-sites respectively
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of similarity found with a non-human protein that is a
member of a protein family of interest to human health,
opens the way to scrutinize all members of that family in
detail using the alternative datasets above.

Despite the above limitations regarding the exclusion
of potentially important binding-sites and the lack of
structural variability in the Pisces target dataset, several
hypotheses were proposed regarding potential drug re-
purposing avenues and side effect mechanisms. The ex-
amples presented demonstrate how a target-based MIF
similarity method can be used to identify potential off-
targets. The results of the docking simulations provide
additional information to help assess if the drug could
bind the predicted target. The docking predictions lead-
ing to small RMSD values represent cases where there
are no steric clashes that prevent binding in the off-
target binding-site and where the similarities found likely
represent important favourable interactions to bind the
ligand that are conserved between the target and off-
target binding-sites. However, as no docking method is
infallible, a consensus docking score using different
docking methods could detect false-negative cases that
were missed. Furthermore, beyond information regard-
ing the binding of the single molecule of interest (the
drug in this case), docking a diverse dataset of small
molecules could be used to generate a binding profile
that can be compared to the binding-site similarity
measure [24]. Finally, docking scores in principle cannot
be directly related to binding-affinities but methods such
as MM/GBSA [60] try to assess binding free-energies
and could provide further information on the potential
drug-target interaction. It is interesting to note however
that given that 29.6% of cases with high levels of similar-
ities (z-score > 3.0) do have an RMSD below 2.0 A shows
that the important interactions that stabilize a ligand
pose in the docking simulation are shared between the
two binding-sites.

The off-targets identified could also represent poly-
pharmacological targets if they happen to be associated
to a biological process relevant to the same condition.
Considering the challenge represented by the design of a
potent ligand for a single target, it is reasonable to as-
sume that the probability of finding an already existing
ligand that can potently inhibit multiple targets is low.
As the ligand would most probably need to go through a
medicinal chemistry program to increase selectivity and
potency for the polypharmacological target(s), all the re-
quired steps involved in drug development such as clin-
ical evaluation of toxicity will be required. Despite this,
the data presented here may contain interesting cases
from a polypharmacological perspective.

Identifying the molecular causes responsible for the
side effects of drugs is a complex task. The phenotype is
not necessarily a direct cause of the modulation of an
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off-target. It could be the result of a cascade of effects
across the biological network, sometimes involving the
primary target. Systems biology methods, such as flux
balance analysis [61] in the case of metabolic networks
can be used to suggest if the inhibition of a given protein
may be deleterious to the organism [62]. However, the
integration of systems and structural methods remains
an important challenge in bioinformatics [63]. With the
increasing accessibility of exome sequencing, in the fu-
ture it is likely that we will be able to integrate such data
with off-target predictions as generated here towards the
goal of precision medicine.

Conclusions

In this work we utilise the detection of molecular inter-
action field similarities in what is to our knowledge the
first large scale analysis prediction of off-target effects to
suggest potential cases of drug repurposing and deter-
mine molecular mechanisms responsible for side effects.
Drug off-targets were identified in a number of different
ways using other binding-site similarity methods based
for example on the detection of C-alpha similarities [28],
side effect similarity [64] or data mined from social net-
works [65]. All these predictions can be combined with
experimental data and systems biology approaches to
yield promising tools to better understand the biological
response of an organism exposed to a drug. Lastly, the
data generated in the present work represents a useful
resource to identify additional cases of protein pairs
that may interact with the same small-molecules in
order to repurpose existing drugs and understand ob-
served side effects.
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