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Abstract

Background: Apixaban effectively lowers the risk of ischemic stroke and systemic embolism in patients with non-
valvular atrial fibrillation. Systemic exposure to a given apixaban dose depends on multiple clearance pathways.
Though routine quantification of direct oral anticoagulants (DOACs) in neurological emergency situations has not
been widely established, suspected associations of DOAC peak concentrations with bleeding events and DOAC
trough concentrations with efficacy and safety suggest that such information might support clinical decision
making.

Case presentation: We describe the case of a 75 year-old woman with atrial fibrillation maintained on apixaban
who was admitted due to suspected acute stroke. Clinical work-up did not confirm ischemic or hemorrhagic stroke
but routine quantification of apixaban revealed an excessively high apixaban plasma concentration (~ 3 h after the
last drug intake: 1100 ng/ml (expected range: 91–321 ng/ml); ~ 12 h after drug intake: 900 ng/ml (expected range:
41–230 ng/ml)) and a substantially prolonged elimination half-life (~ 31 h). The corresponding apixaban concentration-
to-dose ratio was 9900 (ng/ml)/(mg/kg/d) and 8100 (ng/ml)/(mg/kg/d), respectively (expected range: 249–463 (ng/ml)/
(mg/kg/d)). Renal function was only moderately impaired (creatinine 1.36mg/dl (0.5–1.1 mg/dl), creatinine clearance
40ml/min). Genotype analyses revealed that the patient was a CYP3A5*3/*3 non-expressor, a heterozygous carrier of
the ABCG2 c.421C/A alleles, and a homozygous carrier of ABCB1 c.2677 T/T and ABCB1 c.3435 T/T. In the absence of
known drug interactions explaining apixaban clearance impairment, excessive apixaban concentrations were most
probably caused by moderate renal impairment combined with multiple functional polymorphisms of apixaban
clearance pathways.

Conclusions: This case suggests that concurrent genetic polymorphisms can impair multiple apixaban elimination
pathways and thus substantially increase its exposure.
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Background
Apixaban is a rapidly acting, direct concentration-
dependent factor Xa (FXa) inhibitor of both free and
prothrombinase-bound FXa [1–3]. It prevents thrombus
formation [1–3], thereby considerably lowers the risk of
ischemic stroke and systemic embolism in patients with
non-valvular atrial fibrillation, and shows a good safety
and tolerability profile [4–9]. Systemic apixaban exposure
at a given dose depends on multiple clearance pathways
involving renal elimination of unchanged drug (~ 23%)
[10, 11] and oxidative metabolism by cytochrome P450
(CYP) isozymes, mainly CYP3A4 and polymorphic
CYP3A5 (~ 20%) [10, 12] and excretion of unabsorbed
apixaban in the gastrointestinal tract (approximately 34%)
[10]. Linear relationships between apixaban concentra-
tions and alteration of coagulation markers have been
shown [13], at least for concentrations up to approxi-
mately 1000 ng/ml. The bleeding risk associated with very
high concentrations remains unclear but is suspected to
be considerably increased.
In our institution, quantification of direct oral antico-

agulants (DOAC) in neurological emergency situations
has been implemented in clinical routine, because their
immediate action, the suspected association of peak con-
centrations with bleeding events [14], and the correl-
ation of trough concentrations with efficacy and safety
[15–17] suggest that such information can support clin-
ical decision making.

Case presentation
In November 2017, a 75-year-old Caucasian woman (body
mass index 33 kg/m2) was admitted to our neurological
emergency room with suspected acute stroke (weakness of
her left leg, fall to the ground where she remained
undetected for 12 h). She suffered from atrial fibrillation,
arterial hypertension, type 2 diabetes mellitus, and
hypothyroidism. Her medication comprised apixaban (2 ×
5mg/d; started in the outpatient setting by the general
practitioner in 05/2016), ramipril 10mg/d, candesartan 8
mg/d (CYP2C8 inhibitor), saxagliptin 5mg/d, levothyrox-
ine 100 μg/d alternating with 125 μg/d, and simvastatin
10mg/d (CYP3A4 substrate). According to the prescribing
list, the medicines taken ‘as needed’ were: amlodipine
(when systolic blood pressure ≥ 160mmHg), zopiclone
7.5 mg for insomnia, and pantoprazole 40mg for ulcer
prophylaxis.
The patient was transferred to the stroke unit. Ramipril,

candesartan, and apixaban were stopped after admission
and apixaban plasma concentrations were quantified using
ultra-performance liquid chromatography-tandem mass
spectrometry (lower limit of quantification, 1 ng/ml [18]).
At admission, i.e. approximately 3 h after the last drug
intake, the plasma concentration accounted for 1100 ng/
ml (expected range: 91–321 ng/ml [19]). Approximately

12 h after drug intake, apixaban plasma concentration
remained at high concentrations (900 ng/ml, expected
range: 41–230 ng/ml [19]), revealing an elimination half-
life of approximately 31 h. The corresponding apixaban
concentration-to-dose (C/D) ratio was 9900 (ng/ml)/(mg/
kg/d) 3 h after drug intake and 8100 (ng/ml)/(mg/kg/d) at
trough (expected range: 249–463 (ng/ml)/(mg/kg/d) [20]).
The FXa activity was measured by an anti-FXa assay cali-
brated for apixaban and resulted in somewhat lower but
still very high apixaban concentrations (after 3 h and 12 h:
900 ng/ml and 795 ng/ml; Fig. 2). International normalized
ratio values were elevated (INR: 1.58, 3 h after drug intake,
and 1.45 after 12 h; upper limit of normal: < 1.2), whereas
and as expected aPTT levels were within normal limits
(33.3 and 30.8 s, reference range < 35 s) [13, 21]. Other
laboratory results at admission revealed rhabdomyolysis
(creatine kinase 31,269U/l (normal < 170 U/l), ASAT 863
U/l (< 37U/l)), moderate renal impairment (creatinine
1.36mg/dl (0.5–1.1mg/dl); estimated creatinine clearance
40ml/min (Cockcroft-Gault formula with the adjusted
body weight [22, 23]), and moderately elevated ALAT
(186 U/l (< 35U/l)) (Figs. 1 and 2).
After obtaining written informed consent, genotype

analyses were performed to determine the CYP3A5 *3
(g6986A > G, rs776746) single nucleotide polymorphism
(SNP), the ABCG2/BCRP SNP c.421C > A (rs2231142),
and the ABCB1/P-gp SNPs G2677 T/A (rs2032582) and
C3435T (rs1045642), which all have been associated
with functional impairment of the corresponding gene
product [20, 24–26]. Our patient was a CYP3A5*3/*3
non-expressor, a heterozygous carrier of the ABCG2
c.421C/A, and a homozygous carrier of ABCB1 c.2677
T/T and ABCB1 c.3435 T/T.
During the hospital stay, ischemic and hemorrhagic

stroke was ruled out by brain imaging. The diagnostic
work-up revealed a left-sided sciatic nerve lesion, proven
by electrophysiological examinations, being the cause of
her leg weakness. Additional findings encompassed an
asymptomatic stenosis of the right internal carotid artery
(60–70%, NASCET criteria), urinary tract infection with
E. coli (≥ 105 colony-forming units/ml), and radiological
signs of pneumonia accompanied by clinical infection
signs and elevated laboratory inflammation markers
(leukocytosis, C-reactive protein, and procalcitonin).
Therefore, antibacterial therapy with metronidazole and
ceftriaxone was started. After 10 days of hospitalization,
the patient’s renal function improved (creatinine 1.03
mg/dl) (Fig. 2) and she was transferred to a rehabilita-
tion center. In January 2018, apixaban was restarted at
the rehabilitation clinic after renal function had normal-
ized (dosage: 5 mg bid). Then, while taking apixaban,
our patient suffered a duodenal/jejunal bleeding in May
2019. Transfusion of erythrocyte concentrates and inter-
ventional therapy was necessary and apixaban was
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paused. In June 2019, she was diagnosed with acute
myeloid leukemia (AML) and, due to pancytopenia, no
anticoagulation was restarted until today (end of June
2019). Unfortunately, apixaban concentrations or spe-
cific anti-Xa activity were not assessed.

Discussion
Despite being regularly dosed with apixaban, our patient
presented unexpectedly high plasma exposures and con-
current intense anticoagulation, which might be caused
by a substantial impairment of apixaban elimination

Fig. 1 Time course of renal function during the hospital stay. The creatinine clearance was calculated using the Cockcroft-Gault formula with the
adjusted body weight

Fig. 2 Time course of creatine kinase, calibrated anti-factor Xa activity, and apixaban concentrations measured by ultra-performance liquid
chromatography-tandem mass spectrometry
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pathways. Various factors can have led to high apixaban
plasma concentrations and the long half-life (Fig. 3), but
no currently known drug interaction was present. Renal
impairment prolongs elimination half-life [27, 28] but
the effect of renal impairment on apixaban concentra-
tions is rather mild and our patient’s renal function was
only moderately impaired (clearance of 40 ml/min). Ac-
cording to Chang and co-workers [27], in patients with a
creatinine clearance of 40 ml/min, the average increase
in Cmax is 3.4% and in AUC 29%, i.e. substantially
smaller than observed in our patient. Hence, the ob-
served excessively high apixaban concentrations and the
very long half-life in our patient are suggestive to be
caused by additional factors. Apixaban has a high solu-
bility and low passive permeability [19] and its intestinal
absorption of apixaban is modulated by active efflux
transporters. Apixaban is a substrate of BCRP/ABCG2
[29] and also P-gp/ABCB1 [24, 29], which modulate
apixaban absorption, tissue distribution, and elimination
at least in rats [30]. Several BCRP and P-gp polymor-
phisms leading to reduced transporter activities have
been described in Caucasians [31], which might modu-
late relevant pharmacokinetic pathways of apixaban. In
addition, apixaban’s major metabolites are mainly
formed by the CYP3A enzyme family including the poly-
morphic CYP3A5 isozyme. In Japanese patients, BCRP
and CYP3A5, but not P-gp polymorphisms were associ-
ated with higher apixaban trough concentrations [20, 26].
With every impaired elimination pathway, the percentage
contribution to drug clearance of the remaining individual
pathways increases, indicating that concurrent impairment
of several minor pathways could ultimately cause major
exposure changes as shown for rivaroxaban [32].
Our patient was a CYP3A5*3/*3 non-expressor, a het-

erozygous carrier of the ABCG2 c.421C/A alleles, and a
homozygous carrier of ABCB1 c.2677 T/T and ABCB1
c.3435 T/T. High apixaban exposures have already been
reported in heterozygous and homozygous CYP3A5

non-expressors and in homozygous carriers of the defi-
cient ABCG2 c.421 A-allele, whereas heterozygous
ABCG2 c.421C/A carriers and ABCB1 polymorphisms
did not appear to influence apixaban pharmacokinetics
[20, 26, 33]. However, thus far, apixaban pharmacokinet-
ics of carriers of polymorphisms in all three pathways
combined with moderate renal impairment has not been
described. In sum, this genotype constellation could have
led to a reduced clearance of apixaban. The clinical rele-
vance of this finding remains unclear but such clearance
changes might alter the risk/benefit relationship in
affected patients because FXa plasma concentrations are
directly linked to FXa inhibition [13] and efficacy and
bleeding rates [17]. However, further studies to examine
the genetic polymorphisms of apixaban metabolism and
clinical outcome should be conducted particularly in
patients with concurrent clearance impairment of other
relevant drug elimination pathways such as the kidneys.
Our report has some limitations. First, the actually

administered apixaban dose and time of drug intake are
based on anamnestic information. Second, renal function
was estimated using the Cockcroft-Gault equation,
which overestimates renal function in patients with
acute kidney injury. Thus, actual renal function was
probably lower than the estimated value. However, the
effects of renal impairment on apixaban pharmacokinet-
ics are limited [27]. Finally, we assume that transient
renal impairment was the only effect of rhabdomyolysis
on apixaban pharmacokinetics; whether rhabdomyolysis
can affect other apixaban clearance pathways is currently
unknown.

Conclusion
We cared for a patient on oral anticoagulation with
regular apixaban doses who had excessively high apixa-
ban exposures and a substantially prolonged elimination
half-life. The impaired clearance was most probably the
result of moderate renal impairment combined with

Fig. 3 Summary of factors potentially leading to high apixaban plasma concentrations and a long half-life
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multiple functional polymorphisms of apixaban clear-
ance pathways that are all partially involved in apixaban
disposition and in sum may have caused substantial drug
accumulation. Therefore, genotype analyses should be
considered in patients with otherwise unexpected high
plasma concentrations of apixaban.

Abbrevations
ALAT: Alanine aminotransferase; AML: Acute myeloid leukemia;
aPTT: Activated partial thromboplastin time; ASAT: Aspartate
aminotransferase; BCRP: Breast cancer resistance protein; CYP: Cytochrome
P450; DOAC: Direct oral anticoagulants; FXa: Factor Xa; INR: International
normalized ratio; NASCET: North American Symptomatic Carotid
Endarterectomy Trial; P-gp: P-glycoprotein; SNP: Single nucleotide
polymorphism
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