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Abstract

Background: Melatonin has been described in the literature as a potent antioxidant. However, melatonin presents
variable, low bioavailability and a short half-life. The use of polymeric nanoparticulated systems has been proposed
for controlled release. Thus, the purpose of this study was to investigate the action of melatonin-loaded lipid-core
nanocapsules (Mel-LNC) in the antioxidant system of Caenorhabditis elegans, and the possible protective effect of
this formulation against lipid peroxidation caused by paraquat (PQ).

Methods: The suspensions were prepared by interfacial deposition of the polymer and were physiochemically
characterized. C. elegans N2 wild type and transgenic worm CF1553, muls84 [sod-3p::gfp; rol6(su1006)] were
obtained from the Caenorhabditis Genetics Center (CGC). The worms were divided into 5 groups: Control, PQ 0.5
mM, PQ 0.5 mM +Mel-LNC 10 μg/mL, PQ + unloaded lipid-core nanocapsules (LNC), and PQ + free melatonin (Mel)
10 μg/mL. The lipid peroxidation was assessed through thiobarbituric acid (TBARS) levels and the fluorescence
levels of the transgenic worms expressing GFP were measured.

Results: The LNC and Mel-LNC presented a bluish-white liquid, with pH values of 5.56 and 5.69, respectively. The
zeta potential was − 6.4 ± 0.6 and − 5.2 ± 0.2, respectively. The mean particle diameter was 205 ± 4 nm and 203 ± 3
nm, respectively. The total melatonin content was 0.967 mg/ml. The TBARS levels were significantly higher in the
PQ group when compared to the control group (p < 0.001). Mel-LNC reduced TBARS levels to similar levels found
in the control group. Moreover, only Mel-LNC significantly enhanced the SOD-3 expression (p < 0.05). Mel-LNC was
capable of protecting C. elegans from lipid peroxidation caused by PQ and this was not observed when free
melatonin was used. Moreover, Mel-LNC increased the fluorescence intensity of the transgenic strain that encodes
the antioxidant enzyme SOD-3, demonstrating a possible mechanism of protection from PQ-induced damage.

Conclusion: These findings demonstrated that melatonin, when associated with nanocapsules, had improved
antioxidant properties and the protective activity against PQ-induced lipid peroxidation could be associated with
the activation of antioxidant enzymes by Mel-LNC in C. elegans.
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Background
Melatonin, a hormone produced by the pineal glandule,
has a high number of effects that are described in the lit-
erature, such as sedative, analgesic, and anticarcinogenic
effects [1]. Also, it is reported that melatonin acts as a
potent antioxidant and a reactive oxygen species (ROS)
scavenger [2]. In addition, it has been observed that
melatonin stimulates the activation of antioxidant en-
zymes, inhibiting pro-oxidative enzymes [3], and en-
hances the efficacy of mitochondrial functions [4, 5],
regulating a large number of molecular pathways, includ-
ing oxidative stress, inflammation, apoptosis, and cell
death in different contexts [2–5]. However, melatonin pre-
sents a short half-life, variable and low bioavailability, and
is quickly metabolized by the liver and is therefore not the
best option for conventional formulations.
Several studies on nanotechnology have shown that

this technology has a promising innovative drug release
system, improving the properties of some molecules [6–
9]. An improvement of the biological action of drugs has
been demonstrated when associated with polymeric
nanocapsules prepared with a biodegradable and bio-
compatible polymer, poly(ɛ-caprolactone) (PCL) [7].
Controlled systems delivery using polymeric nanoparti-
culated systems is being used to improve the properties
of melatonin [8]. Schaffazick et al. [9] demonstrated that
the encapsulation of melatonin, in polymeric nanocap-
sules, improved the antioxidant properties of this mol-
ecule as it caused a reduction in lipid peroxidation in
the brain and liver of Wistar rats. Recently, our research
group reported that melatonin-loaded lipid-core nano-
capsules (Mel-LNC), prepared with PCL, presented pro-
tective effects against cytotoxicity and genotoxicity
caused by paraquat (PQ) in the A549 cell line [10] and
reduced ROS production in Caenorhabditis elegans ex-
posed to PQ [11].
Paraquat (PQ) is an herbicide used in agriculture and

it is highly toxic for humans and animals, being respon-
sible for many cases of acute poisoning and death [12].
The main mechanism of toxicity of PQ is the generation
of reactive oxygen species, leading to oxidative stress
(OS). This process could result in deleterious effects
such as lipid peroxidation, protein damage, genotoxicity,
and NADPH oxidation, leading to the disruption of bio-
chemical processes where NADPH is required [13–17].
Alternative models are a useful tool used in pharma-

cology and toxicological evaluations during initial stud-
ies. C. elegans is one of the best-established animal
models and a very attractive experimental model due to
its various characteristics: small size, short lifespan, rapid
life cycle, translucent body, ability to self-fertilize and
high reproductive rate, low cost, easiness to handle, and
high degree of shared orthology with the human genome
[18, 19]. Moreover, it is possible to verify the possible

mechanism of action through green fluorescent protein
(GFP) labelled strains [20]. However, there is still a lack
of studies concerning the possible mechanism of action
of Mel-LNC. Therefore, this study aimed to investigate
the activity of Mel-LNC in the antioxidant system in an
alternative in vivo model of Caenorhabditis elegans, and
the possible protective effect of this formulation against
lipid peroxidation caused by PQ.

Methods
Chemicals
Sorbitan monostearate and melatonin were obtained
from Sigma-Aldrich (Strasbourg, France). Biodegradable
polymer poly(ɛ-caprolactone) (PCL) (MW= 50,000) was
supplied by Capa (Toledo, Ohio, USA). Caprylic/capric
triglyceride and polysorbate 80 were obtained from
Delaware (Porto Alegre, Brazil). Bacto-agar and bacto-
peptone were obtained from Becton Dickinson BD®
(New Jersey, USA) and HiMedia Laboratories® (Mumbai,
India). Phosphoric acid and 2-thiobarbituric acid were
purchased from Tedia Co (Fairfield, Ohio, USA) and
Sprectrum Chemical Co (Gardena, California, USA), re-
spectively. All other chemicals and solvents were analyt-
ical or pharmaceutical grade.

Preparation and physicochemical characterization of the
lipid-core nanocapsules
The suspensions were prepared by interfacial deposition
of the polymer [21, 22]. The organic phase was consti-
tuted of melatonin, sorbitan monostearate, capylic/capric
triglyceride, and PCL, and then acetone was added in
the aqueous phase, which was constituted of water and
polysorbate 80, under agitation. After that, the organic
solvent and a fraction of the water were evaporated, and
a white opaque liquid product was obtained. The final
volume was adjusted to a theoretical final melatonin
content of 1 mg/mL. The blank formulation of unloaded
lipid-core nanocapsules (LNC) was prepared as accord-
ing to previously described without the addition of
melatonin.
Particle size and distribution analyses were performed

by dynamic light scattering using backscatter detection
at 173° (Zetasizer ZS, Malvern, UK) and volume-
weighted mean diameter ([D4,3]) was determined by
laser diffractometry at 25 °C (Mastersizer 2000, Malvern,
UK). A calibrated potentiometer (FiveEasy, Mettler To-
ledo, Brazil) was used to measure the pH values at 25 °C.
The zeta potential was determined by electrophoretic
light scattering (ZetasizerNano ZS model ZEN 3600,
Malvern, USA).
The total amount of melatonin in the formulation was

determined by a high-performance liquid chromato-
graph equipped with an ultraviolet-visible detector
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(Elmer Series 200 chromatograph), as according to
Schaffazick et al. [9].
Encapsulation efficiency (EE%) was determined indir-

ectly by measuring free drug concentration (Cf), accord-
ing to the equation: EE% = (Cf - Ctotal)/ Ctotal × 100,
where Ctotal is the total concentration of melatonin in
the formulation. The formulation (Mel-LNC) was put
into an ultrafiltration-centrifugation unit (Millipore,
Amicon® Ultra, cutoff 10,000 Da), centrifuging (10 min,
15,300×g) and injecting the ultrafiltrate in the HPLC sys-
tem as according to Schaffazick et al. [9].

Strains
The C. elegans N2 (wild-type) strains and the green
fluorescent protein (GFP)-marked strain CF1553
[muls84] superoxide dismutase-3 (SOD::GFP) were
maintained on nematode growth medium (NGM) plates
seeded with Escherichia coli OP50 at 20 °C.

Synchronization
Gravid C. elegans were rinsed off the plates into centri-
fuge tubes and were lysed with a bleaching mixture (1%
NaOCl; 0.25M NaOH), followed by flotation in a 30%
sucrose solution (m/v) to separate the eggs. The eggs
were washed with M9 buffer (0.02M KH2PO4, 0.04M
Na2HPO4, 0.08M NaCl, and 0.001M MgSO4) and
allowed to hatch overnight on NGM agar plates without
bacteria [23].

Treatment
Without using bacteria, 2500 previously synchronized L1
worms were divided into 5 groups: Control, PQ 0.5 mM,
PQ 0.5 mM+Mel-LNC 10 μg/mL, PQ 0.5 mM+ LNC,
and PQ 0.5 mM+ free melatonin (Mel) 10 μg/mL in
0.5% NaCl liquid media. The PQ +Mel-LNC, PQ + LNC,
and PQ +Mel groups were pre-treated for 30 min at
20 °C, by constant agitation in a rotator, with Mel-LNC,
LNC, or Mel. After three washes with 0.5% NaCl, the
worms were exposed to PQ 0.5 mM for 30min at 20 °C,
by constant agitation. The PQ concentration chosen was
based on a previous study [11], where 30% worm mor-
tality and ROS enhancement was observed, at a concen-
tration of PQ 0.5 mM, compared to the control group.
The Mel-LNC and Mel concentrations were based on a
previous study by our research group [11]. Additionally,
worms treated with saline were used as a control. After
PQ exposure, the worms were washed 3 times with 0.5%
NaCl to remove the treatments and then transferred to
NGM recovery plates inoculated with Escherichia coli -
OP50 for posterior assays.

Thiobarbituric acid (TBARS) assay
Thiobarbituric acid reactive substances (TBARS) were
determined in the adult worms, 48 h after the end of

treatment, as a marker of lipid peroxidation for the TBA
(thiobarbituric acid) assay using a 1,1,3,3-tetramethoxy-
propane solution as malondialdehyde (MDA) standard
[24]. The plates containing the worms were washed to
remove the OP50. The nematodes were sonicated in tur-
rax homogenizer at full amplitude for about 60 s, in
order to release the lipid and protein content. Then the
content was centrifuged at 12,000 g for 5 min. The
supernatant was transferred to cryotubes where the
TBARS reaction happened, with the addition of 0.1M
phosphoric acid solution, 20 mM sodium dodecyl sulfate
solution, and 40mM 2-thiobarbituric acid solution. The
reaction took place in a water bath for 1 h and 30 min
under agitation at 100 °C. Additionally, the samples were
transferred to 96 well plates and their absorbance was
read at 532 nm (Spectramax Me2; Molecular Devices
LLC, Sunnyvale, CA, USA). The protein content of the
samples was determined as according to Bradford [25].

SOD fluorescence quantification
The GFP expressing strain (CF1553 [muls84]) were sub-
jected to acute exposure as described above. One thou-
sand five hundred L1 worms were maintained in 100 μL
of saline buffer and transferred to a 96 well plate, where
total GFP fluorescence was measured after 1 h of treat-
ment using 485 nm excitation and 530 nm emission fil-
ters and a microplate reader (Spectramax Me2,
Molecular DevicesLLC, Sunnyvale, CA, USA) at 20 °C.
The results were expressed as the mean percentage of
fluorescence intensity relative to control wells.

Statistical analysis
The results were expressed as the mean ± standard devi-
ation (SD). All figures were generated using GraphPad
Prism (GraphPad Software, Inc.). The normality of data
was tested by the Shapiro-Wilk test. The statistical ana-
lysis of significance was carried out using ANOVA,
followed by the post hoc Bonferroni test in the SPSS Sta-
tistics software (version 22). Values of p ≤ 0.05 were con-
sidered statistically significant.

Results
Preparation and characterization of LNC
Both formulations, LNC and Mel-LNC, presented a
bluish-white liquid macroscopic aspect, with pH values
ranging from 5.56 to 5.69. Particle sizing analysis by dy-
namic light scattering showed hydrodynamic diameters
(Z-average) ranging from 200 to 209 nm (Table 1). The
LNC and Mel-LNC presented low polydispersity indexes
and a narrow distribution (Table 1). The zeta potential
for the LNC and Mel-LNC was − 6.4 ± 0.6 and − 5.2 ±
0.2, respectively. The total melatonin content was 0.967
mg/ml with an EE% of 39.5%.
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Effects of treatment with LNC, Mel-LNC, and Mel on PQ-
induced lipid peroxidation
As according to previous studies by our research group,
30% of the worms exposed to PQ 0.5 mM were not alive
24 h after treatment, in contrast with the control group,
where significant mortality was not observed. Pre-
treatment with Mel-LNC, before PQ exposure, was cap-
able of significantly increasing the survival rate of the
worms (about 25%) when compared with the worms that
did not receive the pre-treatment. The same was not ob-
served when the worms were pre-treated with free
melatonin.
Since lipid peroxidation is one of the toxic effects

caused by PQ, we determined the TBARS levels in
exposed worms. The lipid peroxidation assay demon-
strated a significant increase in TBARS levels in
worms exposed to PQ when compared to the control
group (Fig. 1; p < 0.001). When the worms were pre-
treated with free melatonin and LNC, it was not pos-
sible to verify any protection from lipid peroxidation
inflicted by PQ, whereas Mel-LNC significantly de-
creased the TBARS levels induced by this herbicide
(Fig. 1; p < 0.001).

Effects of treatment with Mel-LNC and Mel on GFP-
tagged protein levels
Regarding the possible mechanism of action of Mel-
LNC, it was possible to observe that this formulation
was responsible for the increase in fluorescence levels of
the transgenic worms CF1553 (Fig. 2). This strain ex-
presses the antioxidant enzyme superoxide dismutase-3
(SOD-3), which is responsible for the detoxification of
reactive oxygen species (ROS), reducing the toxic effects
induced by overproduction of ROS caused by PQ expos-
ure. These effects were not observed when the worms
were exposed to Mel, indicating that free melatonin is
less effective in inducing SOD-3 expression, which is re-
sponsible for protecting the worms.

Discussion
In this study, it was demonstrated that Mel-LNC was
capable of protecting C. elegans from lipid peroxidation
caused by PQ. ROS overproduction is the main mechan-
ism of PQ toxicity, inducing cell damage such as mem-
brane injury, leading to the formation of products of
lipid peroxidation, measured by TBARS assay. Addition-
ally, Mel-LNC increased the fluorescence intensity of the
transgenic strain CF1553 [muls84], which presented
homology with antioxidant enzymes SOD-3 in humans.
These findings demonstrated that activation of SOD-3

Table 1 Physicochemical characterization of the formulations

Particle size (nm) Zeta
potential
(mV)

pH Span PDI

D [3, 4]a z-averageb

LNC 205 ± 4.4 199 ± 0.2 - 6.40 ± 0.6 5.36 ± 0.3 1.74 ± 0.02 0.10 ± 0.01

Mel-LNC 203 ± 3.6 199 ± 2.5 −5.20 ± 0.2 5.46 ± 0.2 1.77 ± 0.02 0.12 ± 0.04
alaser diffratometry; bdynamic light scattering analysis; LNC Unloaded lipid-core nanocapsules, Mel-LNC Melatonin-loaded lipid-core nanocapsules. Results are
expressed as mean ± SD. Number of samples?

Fig. 1 Mel-LNC protects against PQ-induced lipid peroxidation. *p <
0.001 compared to control group; +p < 0.001 compared to PQ
group; #p < 0.001 compared to PQ +Mel-LNC group

Fig. 2 Mel-LNC enhances superoxide dismutase (SOD) activity. *p <
0.05 compared to control group
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could be involved in mediating Mel-LNC protection
from PQ toxicity.
The characterization of the formulations used in this

study (LNC and Mel-LNC) presented mean particle sizes
similar to other studies that have used nanocapsules pre-
pared by deposition of pre-formed polymer [26, 27]. The
characterization of formulations is an essential step in
toxicological and pharmacological studies, providing
trustworthy results and conclusions. The polymer used
in the formulation is responsible for the negative zeta
potential values and these values were near zero because
of the presence of polysorbate 80. These characteristics
make the formulation stable and avoid the formation of
aggregates due to a steric repulse mechanism among the
particles [27]. The low polydispersity index indicated the
narrow particle distribution for both formulations (LNC
and Mel-LNC). The total melatonin content in the Mel-
LNC was 96.7%, and the EE% was 39.5%, as according to
previous studies that have used the same formulation
[10, 11]. Furthermore, previous studies have reported
that encapsulation of some substances improves their
biological action [28–30].
Melatonin and its metabolite are described as potent

free radical scavengers [31]. Recently, it was demon-
strated that exogenous melatonin reduced oxidative
stress induced by hydrogen peroxide (H2O2) through
modulation of the ErK/Akt/NFkB pathway [32]. In
addition, Garcia-Rubio et al. [33] showed that melatonin
prevented cell damage in hepatocytes caused by PQ in
an in vitro assay, confirming that melatonin is respon-
sible for protecting against oxidative stress induced by
this herbicide.
The toxic mechanism of PQ is mainly the formation of

ROS leading to oxidative stress. PQ is responsible for in-
hibition of the electron transport chain and reacts with
NADPH forming a PQ-radical. This radical reacts with
oxygen and generates superoxide radicals. The antioxi-
dant enzyme involved in this detoxification is superoxide
dismutase, which converts superoxide anion to a rela-
tively lower active form of hydrogen peroxide [34]. In C.
elegans it is possible to investigate the involvement of
this antioxidant enzyme with strain CF1553. The imbal-
ance between oxidant species and antioxidants results in
cell damage, such as lipid peroxidation. Due to its anti-
oxidant capacity, melatonin has been described in cases
of acute PQ intoxication [35–37]. In this study, it was
possible to observe that Mel-LNC significantly reduced
lipid peroxidation in worms exposed to PQ when com-
pared to the PQ, PQ + LNC, and PQ +Mel groups.
These findings reinforce one of the advantages of nano-
technology: improving the biological action of sub-
stances [38–40]. There are reports describing the
biological action of LNC per se [41]; however, in this
study, this was not observed.

All cellular components are susceptible to ROS action;
however, the lipid membrane is one of the most affected.
Higher levels of TBARS were observed in C. elegans
when exposed to PQ compared to the control group
(not exposed to PQ), and this is a good way to evaluate
lipid peroxidation in this model [20]. The lipid peroxida-
tion process leads to modifications in the structure and
permeability of cell membranes and the formation of
secondary products [42].
Melatonin is also described as a modulator of some

antioxidant enzymes that help the body to eliminate re-
active oxygen and nitrogen species [43]. Our results
demonstrated that Mel-LNC significantly increases
SOD-3 expression, which is crucial to protect the worms
from superoxide radicals formed by PQ. These results
were in agreement with a recent study from Choudhary
et al. [44], which demonstrated that melatonin was able
to reduce lipid peroxidation and increase SOD and CAT
activity in ewes. Moreover, the same has been observed
in an in vitro assay with fresh hepatocytes, where there
was a decrease in MDA levels and modulation of the
antioxidant enzymes SOD and CAT in an oxidative
stress model induced by H2O2 [33].
Wen et al. demonstrated that polydatin, a natural

resveratrol glycoside, enhanced SOD-3::GFP expres-
sion in CF1553 worms, improving oxidative stress re-
sistance in this model [45]. Moreover, an experimental
study using two new molecules with antioxidant prop-
erties, 4-phenylselanyl- and 4-phenyltellanyl-7-chloro-
quinoline, showed the involvement of SOD-3 in
preventing PQ-induced mortality and lifespan reduc-
tion in C. elegans [20].
Tambara et al. [46] reported that extract obtained

from pitanga fruit (a native Brazilian fruit) presented
beneficial effects when C. elegans were exposed to
stressors (H2O2 and juglone), and was responsible for
activating genes involved in antioxidant defenses, such
as SOD-3. It was demonstrated that Se- and Te-
xylofuranosides did not present toxic effects in concen-
trations that prevent and/or reverse the oxidative dam-
age induced by manganese, as well as increasing SOD-3
expression [47].
The better effects of Mel-LNC observed in this study

could be due to the mechanism of distribution of mela-
tonin when this molecule is associated with polymeric
nanocapsules and the characteristics of LNC per se.
About 30–40% of melatonin is incorporated into the
nanocapsules and this leads to a large load arrival of this
molecule in cells, in this case in lipid membranes, where
each nanocapsule present in the suspension can carry
about 1200 molecules of melatonin. To our knowledge,
this is the first time that the involvement of nanoencap-
sulated melatonin in SOD-3 expression has been dem-
onstrated in C. elegans. These findings show that the
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protective activity against oxidative stress induced by PQ
is closely associated with the increase of antioxidant en-
zyme SOD-3 by Mel-LNC in C. elegans.

Conclusion
Taken together, these results show that pre-treatment
with MEL-LNC decreased lipid peroxidation probably
through modulation of SOD enzymatic activity. Interest-
ingly, these results were only observed in C. elegans
treated with nanoencapsuled melatonin. Therefore, in
this study Mel-LNC was more effective against paraquat
damage, showing that nanotechnology presents a useful
tool for improving the characteristics and biological
properties of melatonin.
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