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Abstract

Background: This study aimed to confirm the cytotoxicity of zymosan in vitro and in vivo and determine the
appropriate treatment time and the dose of zymosan.

Methods: AHH-1 cells and HIECs were administered by 0, 20, 40, 80 or 160 ug/mL zymosan. The CCK-8 assay and
flow cytometry were used to evaluate the cell viability and apoptosis 24 h, 48 h, and 72 h after administration.
Furthermore, 12 h before irradiation, the cells were treated with 0, 5, 10, or 20 ug/mL zymosan and then irradiated
with 4 Gy X-rays. Cell viability and apoptosis were measured by the CCK-8 assay and flow cytometry at 24 h. In addition,
the protective effect of zymosan against radiation in vitro was compared to that of 20 ug/mL LPS. In vivo, weight, the
spleen index, and the thymus index were measured to evaluate the toxicity of 0, 5, 10, 20, and 10 mg/kg zymosan. In
addition, rats were treated with 0, 2, 4, 8, or 10 mg/kg zymosan and then irradiated with 7 Gy X-rays. The survival rate,
organ index were evaluated. The protective effect of zymosan against radiation in vivo was compared to that
of 10 mg/kg LPS a positive control.

Results: The viability and apoptosis of cells treated with different doses and treatment times of zymosan
were not different from those of control cells (p < 0.05). Furthermore, cell viability and apoptosis were clearly
improved after zymosan preadministration (p < 0.05). The radioprotective effect of zymosan was dose-
dependent. In addition, the viability of cells pretreated with zymosan was higher than that of cells pretreated
with LPS, and the apoptosis rate of zymosan-treated cells was lower than that of cells pretreated with LPS

(p < 0.05). In vivo, weight, the spleen index and the thymus index were significantly decreased by zymosan at
a concentration of 20 mg/kg (p < 0.05). Further experiments showed that the concentration at which zymosan
exerted radioprotective effects was 10 mg/kg. The survival curves in the irradiated rats were barely separated between
the LPS treatment and zymosan treatment.

Conclusion: Zymosan administration before radiation exposure significantly increased cell viability and the survival
rates of rats.
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Background

Humans are inevitably exposed to some radiation de-
rived from various trace radionuclides, such as cosmic
rays [1], buildings [2], and Wi-Fi radiation [3], but these
natural sources of radiation rarely cause fatal radiation
damage to human beings. However, the development
and utilization of artificial radiation sources such as
nuclear power stations, nuclear reactors, and nuclear
weapons have forced mankind to face new life-threatening
risks [4]. Safety issues with nuclear sources can result in
the generation of ionizing radiation, which may cause fatal
radiation damage to humans or other organisms [5]. In re-
cent years, increasing attention has been paid to radiation-
related research worldwide by patients, physicians and
staff in radiation related departments [6]. At present, the
best antiradiation drug approved by the FDA is WR-2721,
which is used by the US Army [7]. However, due to its ob-
vious side effects of nausea and vomiting, the use of WR-
2721 is restricted to a certain extent [8]. At present, most
radioprotective drugs and drugs used to treat radiation ex-
posure in the research stage have some shortcomings such
as unclear effects, unclear mechanisms or high toxicity, so
they are limited to preventive administration and injection
after radiation exposure has no obvious therapeutic effect.

Zymosan, a water-soluble polysaccharide, is typically
prepared from the fungal wall of yeast (Saccharomyces cer-
evisiae). It contains a type of dextran linked by p-1,3
glycoside bonds, and can bind to toll-like receptor (TLR)2
on inflammatory cells [9, 10]. The use of TLR-2 agonist,
like zymosan, has the potential to provide protection
against radiation-induced bone marrow cell apoptosis
[11]. Liu and colleagues have found bone marrow cells
benefit from the activation of TLR4 and its in vivo ligands
in radiation biology [12]. However, the cytotoxicity of
zymosan is unclear, and appropriate treatment time and
the dose of zymosan are needed to further analyze.

In this study, we analyzed the cytotoxicity of zymosan
in vitro and in vivo and determined the appropriate
treatment time and the dose of zymosan. The findings
provide an experimental basis for the development of
safe and effective radioprotective drugs in the future.

Methods

Cell culture

Human peripheral blood B lymphocytes (AHH-1 cells,
BNCC331188) were purchased from BNBIO.com (Beijing,
China), and human intestinal epithelial cells (HIECs, MZ-
0792) were purchased from Mingzhoubio.com (Zhejiang,
China). The cells were cultured in DMEM containing 10%
fetal bovine serum at 37 °C and 5% CO,.

Cell counting kit (CCK)-8 assay
Cells (10? cells/well) were cultured in an incubator con-
taining 5% CO, at 37°C for 24h, and then 10 uL of
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CCK-8 solution (GipBio, Shanghai, China) was added
and mixed well. Cells were then incubated for 4 h with
oscillation, followed by reading with microplate reader
(Synergy H1, BioTek, USA). The absorbance of each well
at 450 nm was measured by normalization to the blank
control. The cell survival rate was calculated based on
the following formula: cell survival rate (%) = [(As-Ab)/
(Ac-Ab)] x 100.

As = Absorbance of treatment wells.

Ab = Absorbance of blank.

Ac = Absorbance of Control wells.

Flow cytometry

The Annexin V-FITC/PI Kit (CA1020, Solarbio, Beijing,
China) was used to detect cell apoptosis. Cells cultured
for 24h (1 x 10° cells) were collected and washed with
precooled phosphate-buffered saline (PBS, pH7.2-7.4,
Mlbio, Shanghai, China). The cells were suspended in 1
mL of 1x binding buffer containing Ca** and centrifuged
at 300xg for 10 mins. Then, the cell concentration was
adjusted to 1x10° cells/mL with 1mL of 1x binding
buffer. A total of 100 pL of the cell solution was added
to 5 pL of annexin V-FITC and incubated in the dark for
10 min at room temperature. Then, 5 uL of propidium
iodide (PI) was added, and the cells were incubated for
5 min. Finally, the volume of the cell suspension was ad-
justed to 500 pL with PBS and evaluated by flow cytome-
try (1040, ACEA NovoCyteTM, USA) within one hour.
The results were evaluated by Cell Quest software (Ver-
sion 5.1, BD Biosciences).

Effect of zymosan on cell toxicity

AHH-1 and HIEC cells were administered 0, 20, 40, 80
or 160 pg/ml zymosan (tlrl-zyn, InvoGen). The CCK-8
assay and cell flow cytometry were used to evaluate cell
viability and apoptosis 24 h, 48 h, and 72 h after adminis-
tration to determine the dose-limiting toxicity of
zymosarn.

Determination of the dose at which zymosan exerts
radioprotective effects on cell

Twelve hours before irradiation, cells were treated with
0, 5, 10, or 20 pg/ml zymosan and then irradiated with 4
Gy X-rays at a dose rate of 0.25 Gy/min (Synergy, Elekta,
Beijing, China). The CCK-8 assay and flow cytometry
were utilized to evaluate cell viability and apoptosis at
24 h to determine the optimal dose of zymosan.

Comparison of the radioprotective effects of
lipopolysaccharide and zymosan in vitro

Cells were randomly divided into 4 groups: the normal
control (control) group (cells were normally cultured),
irradiation only (model) group (cells were irradiated with
4 Gy radiation), LPS group (cells were treated with
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20 pg/ml LPS 12 h before being irradiated), and zymosan
group (cells were treated with 20 pg/ml zymosan 12h
before being irradiated).

Animals

A total of 120 male Sprague Dawley rats weighing 180 +
20g (aged 6-8weeks) were purchased from Jinan
Pengyue Experimental Animal Co., Ltd. (scxk (Lu) 20,
190,003). The rats were housed at normal temperature
(22 £2°C) and humidity (55 + 5%). Standard diet for la-
boratory (Jinan Pengyue, Shandong, China) and water
were freely provided, and the animals were housed
under a 12-h light/dark cycle. The rats were adaptively
fed for 1 week. The animal experiments were conducted
following the guidelines of the National Institutes of
Health (NIH pub. No. 85-23, revised 1996) and were ap-
proved by the Animal Protection and Use Committee of
Binzhou Medical University.

Toxic effects of zymosan on rats

Zymosan (0, 5, 10, 20, or 40 mg/kg) was sterilely injected
intraperitoneally, which was dissolved in sterile normal
saline. Then, the rats were fed routinely and observed
for 21 days. Weight changes were observed weekly. The
relative weight changes were calculated by (Treatment
group-Control)/(Control group) * 100. After 21 days,
the rats were euthanized with 3% pentobarbital so-
dium (150 mg/kg). The spleen, thymus and liver were
removed and immediately weighed, and the organ
index was calculated by the following formula: Organ
index = organ weight/body weight [13].

Determination of the appropriate dose of zymosan for
radioprotection of rats

Twenty-four hours before irradiation, the rats were in-
traperitoneally injected with 0, 2, 4, 8 or 10 mg/kg zymo-
san and then irradiated with 7 Gy X-ray at a dose rate of
1.0 Gy/min. Then, they were fed routinely and observed
for 21 days. The survival of the rats was assessed each
day. If animals were moribund, they were humanely eu-
thanized. After 21 days, the rats were euthanized with
3% pentobarbital sodium (150 mg/kg). The spleen index
and thymus index were calculated.

Comparison of the radioprotective effects of
lipopolysaccharide and zymosan in vivo

Twenty-four rats were randomly divided into 4 groups,
6 in each group: the normal control (control) group (the
rats were normally fed), irradiation only (model) group
(the rats were irradiated with 7 Gy X-ray at a dose rate
of 1.0 Gy/min), LPS group (the rats were intraperitoneally
injected with 10 mg/kg LPS 24 h before being irradiated),
and zymosan group (the rats were intraperitoneally injected
with 10 mg/kg zymosan 12h before being irradiated). If
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animals were moribund, they were humanely euthanized.
The survival of the rats was assessed each day. After 21
days, the rats were euthanized with 3% pentobarbital so-
dium (150 mg/kg). The spleen index and thymus index
were calculated.

Statistical analysis

Prism 5.01 statistical analysis software was used for data
processing, and the results are expressed as the mean +
standard deviation ("X + SD). Data from multiple groups
were assessed by one-way analysis of variance (ANOVA),
and Tukey’s test was used for subsequent analysis. p <
0.05 indicated a significant difference.

Results

Effect of zymosan on cell viability

To clarify the effect of zymosan on cell viability, AHH-1
cells and HIECs were treated by different concentrations
of zymosan (0, 20, 40, 80 or 160 pg/mL). As demon-
strated in Fig. la, the viability of AHH-1 cells was not
affected upon treatment with different concentrations of
zymosan. The viability of the AHH-1 cells was not
affected at 24, 48 or 72 h. Similarly, the viability of the
HIECs was not affected upon treatment with different
concentrations of zymosan for different periods (Fig. 1b).
These results showed that zymosan did not affect cell
viability.

Effect of zymosan on cell apoptosis

To further confirm that zymosan is not toxic to cells,
the apoptosis of AHH-1 and HIEC cells was evaluated.
Figure 2a shows the apoptosis rates of AHH-1 cells
treated with 20, 40, 80 or 160 pg/mL zymosan for 24, 48,
or 72 h. There were no clear differences among the dif-
ferent groups of cells (p >0.05). The apoptosis rates of
HIECs are shown in Fig. 2b. Similarly, the apoptosis rate
of HIECs was not affected upon treatment with different
concentrations of zymosan for different periods. The
apoptosis results are shown in the supplementary file.

The appropriate dose of zymosan for radioprotection of
cells

The radioprotective effects of zymosan pretreatment on
AHH-1 cells and HIECs are shown in Fig. 3. The cells
were administered 0, 5, 10 or 20 pg/mL zymosan 12h
before being irradiated. The viability of cells exposed to
4.0 Gy radiation was obviously decreased compared with
that of control cells (p < 0.05, Fig. 3a, b), while the apop-
tosis rate of the irradiated cells was significantly in-
creased (p<0.05, Fig. 3c, d). The protective effect of
zymosan on cells was dose-dependent. The higher the
concentration of zymosan, the higher the viability of
AHH-1 cells and HIECs (Fig. 3a, b) and the lower the
apoptosis rate of AHH-1 cells and HIECs (Fig. 3c, d).
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Fig. 1 The effect of zymosan on cell viability. a The viability of AHH-1 cells treated with different concentrations of zymosan (0, 20, 40, 80, or
160 pug/mL) for 24, 48 or 72 h. b The viability of HIECs treated with different concentrations of zymosan (0, 20, 40, 80, or 160 pg/mL) for 24, 48 or
72 h. The test was repeated 3 times. The data are expressed as the X + SD. ANOVA was used to analyze the data from the different groups
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Fig. 2 The effect of zymosan on cell apoptosis. a The apoptosis rate of AHH-1 cells treated with different concentrations of zymosan (0, 20, 40,
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Fig. 3 The radioprotective effects of zymosan on cells. Cells were treated with different concentrations of zymosan (0, 5, 10, or 20 ug/mL) 12 h
before being treated with 4 Gy radiation. a The viability of AHH-1 cells after 24 h. b The viability of HIECs after 24 h. ¢ The apoptosis rate of AHH-1
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group, #p < 0.05, ##p < 0.01. The test was repeated 3 times. The data are expressed as the X + SD. ANOVA was used to analyze the data from the

Radmtmn (4Gy)

Given the lower apoptosis rates, zymosan was used at a
concentration of 20 pg/mL for further in vitro testing.

Comparison of the radioprotective effects of LPS and
zymosan on cells

Cells treated with zymosan were demonstrated a lower
cell death than those treated with LPS. As shown in
Fig. 4a and b, the viability of AHH-1 cells and HIECs
significantly increased after pretreatment with LPS or

zymosan (20 pg/mL), and the cell viability of the zymo-
san pretreatment group was higher than that of the LPS
pretreatment group (p <0.05). The cell apoptosis assay
(Fig. 4c, d) revealed that the apoptosis rates of AHH-1
cells and HIECs were significantly reduced after pre-
treatment with LPS and zymosan and that the apoptosis
rate of cells pretreated with zymosan was lower than
that of cells pretreated with LPS (p < 0.05). For radiation
protection, this data showed that cells treated with
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zymosan showed a higher cell activity than those treated
with LPS.

Effect of zymosan on rat weight and organ indexes
In vivo, after different concentrations of zymosan (0, 5,
10, 20, 40 mg/kg) injection, the body weight, relative

weight changes, spleen index, thymus index and liver
index were observed for 3 weeks. The results showed
that there was no significant difference in body weight
between rats intraperitoneally injected with 5 or 10 mg/
kg zymosan and control rats (p > 0.05, Fig. 5a). At a con-
centration of 20 mg/kg, zymosan significantly decreased
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zymosan group, #p < 0.05, ##p < 0.01. There were 6 rats in each group. The data are expressed as the X + SD. ANOVA was used to analyze the
data from the different groups

the body weights of the rats (p < 0.05), and 40 mg/kg zy-
mosan further decreased the body weights of the rats
(Fig. 5a). Similarly, there was no difference in relative
weight changes between 5 mg/kg and 10 mg/kg zymosan
treatment (p > 0.05, Fig. 5b). Compared with 5 mg/kg zy-
mosan, the relative weight changes were clearly de-
creased after 20 or 40 mg/kg zymosan injection (p <
0.05). The spleen index, thymus index and liver index
were analyzed (Fig. 5c), and no significant difference in
the spleen index or thymus index was found between
rats intraperitoneally injected with 5 or 10 mg/kg zymo-
san and control rats (p > 0.05). At a concentration of 20
mg/kg, zymosan significantly decreased the spleen index
and thymus index of the rats (» <0.05), and 40 mg/kg
zymosan further decreased the spleen index and thymus

index when compared with control rats (p <0.05, Fig.
5c).However, there was no significant difference in liver
index among groups (p > 0.05).

Dose at which zymosan exerts radioprotective effects in
rats

The rats were administered 0, 2, 4, 8 or 10 mg/kg zymo-
san 24 h before being irradiated. The survival rate, spleen
index and thymus index of rats exposed to 7.0 Gy radi-
ation were obviously lower than those of control rats
(p<0.01, Fig. 6). The protective effect of zymosan on
rats was dose-dependent. The higher the concentration
of zymosan, the higher the survival rate, spleen index
and thymus index of the rats. At a concentration of 8
mg/kg, zymosan significantly decreased the spleen index
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and thymus index of the rats (p <0.05). Given higher
survival rate, zymosan was used at a concentration of
10 mg/kg for further in vivo testing.

Comparison of the radioprotective effects of LPS and
zymosan in vivo

As shown in Fig. 7, the survival rate, spleen index and
thymus index were significantly decreased in zymosan-
and LPS-treated rats compared with control rats (p <
0.01). LPS and zymosan (10 mg/kg) pretreatment prior
to radiation exposure significantly increased the survival
rate, spleen index and thymus index. Furthermore, there
was no clear difference among groups in liver index (p >
0.05).

Discussion

Nuclear radiation injuries mainly involve the destruction
of genes and biological macromolecular structures and
the degeneration or necrosis of tissue cells caused by
ionizing radiation to cause tissue and organ dysfunction
[14, 15]. The mechanisms for the occurrence and devel-
opment of radiation injury have been analyzed thor-
oughly, but no ideal treatment has been identified. At
present, there are two main strategies for protecting
against ionizing radiation: one is external protection,
that is, the damaging effects of rays on the body are re-
duced by using appropriate shielding materials, and the
other way is internal protection, which means the appro-
priate antiradiation drugs are developed. Antiradiation
drugs can counteract radioprotective effects before or
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after radiation exposure [16, 17]. Currently, most of the
drugs used for the treatment of radiation-induced dam-
age are western medicines, and they are mainly used for
irradiation prevention and early treatment after irradi-
ation, but some adverse reactions are usually accompan-
ied when they are used, so they are not suitable for long-
term use. However, repairing the body after radiation
damage needs long-term treatment. Therefore, it is im-
perative to search for antiradiation drugs that can be or-
ally administered with high efficiency, low toxicity, and
few side effects and to explore the mechanisms under-
lying radioprotection.

Recently, some progress towards the research of antira-
diation drugs has been made. The potency of sulfur-
containing radiopreventive drugs (cysteamine S-phosphate
sodium salt, N-acetylcysteine) is generally low [18, 19].
The potency of vitamins and hormones is equivalent to
that of sulfur-containing drugs, but their effective doses
are thousands of times higher than the physiological con-
centrations, and also the side effects associated with their
long-term use are not easy to overcome [20, 21]. Zymosan
is a natural polysaccharide B-glucan that is present in the
yeast cell wall. It can exert strong effects and generally be
free from side-effects. Zymosan has been shown to com-
bine with receptors on the surface of immune cells to
regulate immune responses and enhance the immune ac-
tivity of cells [22]. Taghavi et al. also found that zymosan
had the antitumor activity and played a positive role in
inhibiting the progression of melanoma by regulating the
expression of TLR-2, TLR-4 and tumor necrosis factor-a
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[23]. Although it has been reported that fungal beta glucan
and mushroom B-glucan can improve the survival rate of
irradiated mice [24, 25], there has been little research on
the antiradiation effect of zymosan. In this research, based
on cell and animal tests, the radioprotective effect of
zymosan on cells and rats irradiated for different time pe-
riods was studied, and the appropriate dose of zymosan
was preliminarily determined. We found that zymosan
administration before radiation exposure significantly
increased cell viability and the survival rates of rats.

Nevertheless, our results demonstrated that zymosan
treatment decreased the weight of rats at a concentra-
tion of 20 mg/kg or 40 mg/kg. At the same time, the
spleen index and thymus index were also clearly de-
creased at a concentration of 20 mg/kg or 40 mg/kg. The
organ index didn’t capture the effects on the organ en-
tirely. Specifically, changes in the cell structure or histo-
pathology might help to explain the toxicity of zymosan
in the organs. In further study, the pathological observa-
tion of organs is necessary to analyze the toxicity of
Zymosan.

The survival curves in the irradiated rats were barely
separated between LPS treatment and zymosan treat-
ment. Furthermore, LPS acted as protection in the cell
viability after radiation. Interestingly, the values of cell
viability and organs indexes were higher in the zymosan
treatment than LPS treatment after radiation. Although

zymosan has demonstrated potential as a prophylactic
radiation treatment in this study, it still needs further re-
searches to mitigate the noted toxicity. The combination
of more agents may increase the radiation protection
effect, but this view is only our speculation. The above
results have shown that zymosan has an effective protec-
tion against ionizing radiation, which is simply as a pre-
ventative therapy. However, more researches are needed
to explain why zymosan decreased spleen/thymus indi-
ces to produce a protective effect in the radiation treat-
ment. The difference in radiosensitivity between genders
has been well documented [26]. Klein et al. found
women with comparatively lower radiation doses were
more successful in fenestrated endovascular aneurysm
repair [27]. Because of gender diversity on radiation
dose, only male rats were chosen in this study, which is
also a limitation of the study. In addition, Missig and
colleagues found that prenatal TLR7 activation could in-
duce a maternal inflammatory response and fewer fe-
male offspring, that were substantially different—and
sometimes opposite to—those seen when targeting
TLR3 and/or TLR4 [28]. This reveals that male and fe-
male animals as some key differences have been seen in
the sensitivity to TLR activation.

However, the magnitude and severity of nuclear radia-
tion’s harm to human health also depend on factors such
as the type of radiation, radiation dose rate, dose
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absorbed by the body and individual sensitivity. Different
types of nuclear radiation have significant differences in
relative biological effects on organisms. Therefore, in the
future, we will address the above issues and provide
basic biological data for the development of effective ra-
dioprotective drugs.

Conclusions

In summary, zymosan pretreatment significantly in-
creased cell viability and the survival rate of rats, but the
high dose of zymosan might be toxic to rats. In the fur-
ther, the pathological observation of organs is necessary
to analyze the toxicity of zymosan. There are still many
uncertainties regarding the utilization of zymosan for
the treatment of radiation-induced toxicity, such as how
to improve the efficacy of zymosan as a preventative
therapy and what is its function on those who are ex-
posed to radiation.
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