The main finding of this study is that the frequency of prescription changes (PCF) is associated with an increased risk of hospital admission. We also confirmed the known association between the Chronic Disease Score (CDS) and hospital admission. While the PCF and CDS were both associated with hospital admission, the correlation between the two instruments was poor. The CDS measures comorbidity on the basis of the 1-year pharmacy dispensing data. In contrast, the PCF is based on prescription changes over a 3-month period. The results showed that the PCF within a three month period is comparable with the one year period of the CDS. Therefore, the PCF is more useful in practice.
We found that among patients with a low CDS score, an increasing number of prescription changes was associated with an increased risk of hospital admission. Stratified analysis of the CDS scores into the four categories confirmed this finding: at each CDS category, we found a comparable increase in the risk of hospitalization caused by the number of prescription changes.
Stratification by age (<65 or ≥65 year) and medication use (< 5 or ≥5 medications used) showed an increasing risk of hospitalization with increasing PCF (Figure 1). Several studies have reported age and polypharmacy as risk factors for hospital admission. We found that, based on PCF scores, even patients younger than 65 years and patients without polypharmacy were at increased risk of hospital admission. It is plausible that the risk was lower for planned than for emergency admissions, but this was not confirmed after stratification by type of hospitalization. Unexpectedly, patients on polypharmacy had a decreased risk of hospital admission: PCF 4 or higher decreased between 9 and 3 months before the index date. On the basis of this finding, the most common reason for prescription changes, namely, stopping medication, would appear to be protective against hospital admission in patients on polypharmacy. As we do not know which medications were stopped, this finding does not mean that stopping specific medications is protective.
The CDS has the disadvantage that it is based on information about medication history collected for at least 1 year prior to the event under investigation. We showed that it is possible to predict the risk of hospitalization on the basis of the number of prescription changes in 3 months. On the other hand, the CDS is based on the use for 17 therapeutic groups of somatic medications, whereas the PCF is based on all medications and thus requires detailed medication histories. The CDS was developed to measure a patient’s overall health status, but the PCF is not suitable for this. A potential weakness of the CDS, which was developed in 1992, is that it has never been adjusted to accommodate new medication classes, unlike the PCF, which is based on all medications used. Despite this, the CDS is still associated with hospital admissions.
Limitations
This study has a number of limitations. The database does not provide information about the indication for which a drug is prescribed, so we cannot comment about the frequency of medication changes for specific indications. One could argue that more ill patients will have more prescription changes. However, this was not the aim of the study. The use of non-prescription medicines is not known as patients could also buy medications OTC. In addition, prescribers might not write out a new prescription each time drug use is changed. Because the PCF is based on dispensing data from community pharmacies, this would mean that the association between PCF and hospital admission might have been underestimated. As the data set used in this study covered the period between July 1998 and June 2000, it is possible, but unlikely, that since then the prescribing behavior of doctors has changed, influenced by medication reconciliation programmes, or indications for hospital admission might have become stricter, both of which would have led to overestimation of the association between PCF and hospitalization. While the Dutch PHARMO database is complete, it does not provide information about the socioeconomic status or compliance of patients or their health status (the controls might have been ill less often than the patients); however, as the controls were sampled independently of exposure status, these factors would not influence our results. Lastly, it was outside the scope of this study to distinguish between the different reasons for changing medication in greater detail. To our knowledge, besides the study of Koecheler et al. [17], no other studies have investigated prescription changes and the risk of hospital admission. Several other studies, like the HARM study, have described risk factors for medication-related hospital admission, but did not focus on prescription changes.
Further research should consider more detailed variables of the prescription changes like types of medications involved. In addition, it should be interesting to test the PCF model in a follow up study.