Skip to main content
  • Meeting abstract
  • Open access
  • Published:

NMR study of a soluble Guanylate Cyclase (sGC) human homologue: the H-NOX domain from Nostoc sp.

Heme-nitric oxide/oxygen binding (H-NOX) motifs can be found as proteins of approximately 200 amino acids in length or can exist as a domain within larger proteins, such as soluble guanylate cyclase. The H-NOX domain is conserved across eukaryotes and bacteria; within sGC, the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). Soluble guanylate cyclase (sGC) contains a heme-binding N-terminal domain that regulates the catalytic site contained within the C-terminal end of the enzyme. sGC is a heterodimer, consisting of α1 or α2 subunit bound to β1 and catalyzes the conversion of GTP to GMP. Activation of NO by sGC increases its activity several hundred-fold, promoting vasodilation and inhibiting platelet aggregation. Under pathophysiological conditions characterized by oxidative stress, sGC suffers heme loss, becomes unresponsive to NO and is tagged for degradation by the ubiquitin-proteasome pathway, leading to compromised NO signaling and cardiovascular disease. Ligands, such as BAY 58-2667, activate sGC in a heme-independent manner and protect heme-oxidized sGC from proteasome degradation. Herein, we present a preliminary NMR investigation of the conformational and electronic properties of the heme-bound H-NOX protein from Nostoc sp., which shares a 35% sequence identity with the H-NOX domain of human sGC. Additionally, we use UV-visible and heteronuclear NMR spectroscopy in order to investigate the structural integrity, the conformational variations and the dynamics of the H-NOX polypeptide during oxidation of the Fe(II) ion, while data on the changes/destabilization of the heme moiety upon the addition of a number of ligands and oxidizing agents (NO, BAY 58-2667, ODQ) are acquired through NMR. Monitoring the dynamical behavior of the H-NOX domain and the alterations occurring in its structure triggered by the changes in the oxidation status of the Fe(II)-Protporphyrin IX prosthetic group in solution by NMR, may provide valuable insights for sGC activation/stimulation and NO signaling.

Acknowledgments

We acknowledge partial support from EU FP7-REGPOT-2011 “SEE-DRUG” (nr. 285950 to A.P. & G.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Papapetropoulos.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyriou, A., Bantzi, M., Giannis, A. et al. NMR study of a soluble Guanylate Cyclase (sGC) human homologue: the H-NOX domain from Nostoc sp.. BMC Pharmacol Toxicol 16 (Suppl 1), A73 (2015). https://doi.org/10.1186/2050-6511-16-S1-A73

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/2050-6511-16-S1-A73

Keywords