Jones ME, Draghi DC, Thornsberry C, Karlowsky JA, Sahm DF, Wenzel RP. Emerging resistance among bacterial pathogens in the intensive care unit--a European and North American Surveillance study (2000–002). Ann Clin Microbiol Antimicrob. 2004;3:14.
Article
PubMed
PubMed Central
Google Scholar
Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20:714–8.
Article
CAS
PubMed
Google Scholar
Archer GL, Climo MW. Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob Agents Chemother. 1994;38:2231–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006;119:S3–10.
Article
CAS
PubMed
Google Scholar
Hossion AM, Zamami Y, Kandahary RK, Tsuchiya T, Ogawa W, Iwado A, et al. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J Med Chem. 2011;54:3686–703.
Article
CAS
PubMed
Google Scholar
Lupu R, Menendez JA. Pharmacological inhibitors of Fatty Acid Synthase (FASN)--catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr Pharm Biotechnol. 2006;7:483–93.
Article
CAS
PubMed
Google Scholar
Al-Saif SS, Abdel-Raouf N, El-Wazanani HA, Aref IA. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J Biol Sci. 2014;21:57–64.
Article
CAS
PubMed
Google Scholar
Kataoka M, Hirata K, Kunikata T, Ushio S, Iwaki K, Ohashi K, et al. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J Gastroenterol. 2001;36:5–9.
Article
CAS
PubMed
Google Scholar
Al-Qadiri HM, Al-Alami NI, Al-Holy MA, Rasco BA. Using Fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water. J Agric Food Chem. 2008;56:8992–7.
Article
CAS
PubMed
Google Scholar
Devi KP, Nisha SA, Sakthivel R, Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol. 2010;130:107–15.
Article
CAS
PubMed
Google Scholar
Eumkeb G, Siriwong S, Thumanu K. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J Photochem Photobiol B. 2012;117:247–53.
Article
CAS
PubMed
Google Scholar
Huleihel M, Pavlov V, Erukhimovitch V. The use of FTIR microscopy for the evaluation of anti-bacterial agents activity. J Photochem Photobiol B. 2009;96:17–23.
Article
CAS
PubMed
Google Scholar
Richards RM, Xing DK. In vitro evaluation of the antimicrobial activities of selected lozenges. J Pharm Sci. 1993;82:1218–20.
Article
CAS
PubMed
Google Scholar
Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J Pharm Pharmacol. 2000;52:361–6.
Article
CAS
PubMed
Google Scholar
Clinical Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: Matthew AW, Franklin RC, William AC, Micheal ND, George ME, David WH, et al., editors. Clinical and Laboratory Standards Institute document M07-A9. Pennsylvania: Clinical and Laboratory Standards Institute; 2012. p. 16–34.
Google Scholar
Bonapace CR, Bosso JA, Friedrich LV, White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis. 2002;44:363–6.
Article
PubMed
Google Scholar
Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52:1.
Article
CAS
PubMed
Google Scholar
Wojnicz D, Jankowski S. Effects of subinhibitory concentrations of amikacin and ciprofloxacin on the hydrophobicity and adherence to epithelial cells of uropathogenic Escherichia coli strains. Int J Antimicrob Agents. 2007;29:700–4.
Article
CAS
PubMed
Google Scholar
Eumkeb G, Sakdarat S, Siriwong S. Reversing beta-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine. 2010;18:40–5.
Article
CAS
PubMed
Google Scholar
Shen L, Liu D, Li M, Jin F, Din M, Parnell LD, et al. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria. PLoS ONE. 2012;7:e47194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou K, Zhou W, Li P, Liu G, Zhang J, Dai Y. Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control. 2008;19:817–22.
Article
CAS
Google Scholar
Baldwin JN, Strickland RH, Cox MF. Some properties of the beta-lactamase genes in Staphylococcus epidermidis. Appl Microbiol. 1969;18:628–30.
CAS
PubMed
PubMed Central
Google Scholar
Majiduddin FK, Materon IC, Palzkill TG. Molecular analysis of beta-lactamase structure and function. Int J Med Microbiol. 2002;292:127–37.
Article
CAS
PubMed
Google Scholar
Eumkeb G, Siriwong S, Phitaktim S, Rojtinnakorn N, Sakdarat S. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J Appl Microbiol. 2012;112:55–64.
Article
CAS
PubMed
Google Scholar
Richards RME, Xing JZ, Gregory DW, Marshall D. Mechanism of sulphadiazine enhancement of trimethoprim activity against sulphadiazine-resistant Enterococcus faecalis. J Antimicrob Chemother. 1995;36:607–18.
Article
CAS
PubMed
Google Scholar
Reading C, Farmer T. Antibiotic: assessment of antimicrobial activity and resistance. London: Academic; 1983.
Google Scholar
Teethaisong Y, Autarkool N, Sirichaiwetchakoon K, Krubphachaya P, Kupittayanant S, Eumkeb G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J Biomed Sci. 2014;21:90.
Article
PubMed
PubMed Central
Google Scholar
Tocheva EI, Matson EG, Morris DM, Moussavi F, Leadbetter JR, Jensen GJ. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell. 2011;146:799–812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toubas D, Essendoubi M, Adt I, Pinon JM, Manfait M, Sockalingum GD. FTIR spectroscopy in medical mycology: applications to the differentiation and typing of Candida. Anal Bioanal Chem. 2007;387:1729–37.
Article
CAS
PubMed
Google Scholar
Garip S, Gozen AC, Severcan F. Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem. 2009;113:1301–7.
Article
CAS
Google Scholar
Naumann D. Infrared spectroscopy in microbiology. In: Myers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons; 2000. p. 102–31.
Google Scholar
Chan BC, Ip M, Lau CB, Lui SL, Jolivalt C, Ganem-Elbaz C, et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol. 2011;137:767–73.
Article
CAS
PubMed
Google Scholar
Eliopoulos GM, Moellering RC. Antimicrobial combinations. In: Lorian VS, editor. Antibiotic in laboratory medicine. Baltimore: Williams and Wilkins; 1996. p. 330–96.
Google Scholar
Kim S, Reuhs BL, Mauer LJ. Use of Fourier transform infrared spectra of crude bacterial lipopolysaccharides and chemometrics for differentiation of Salmonella enterica serotypes. J Appl Microbiol. 2005;99:411–7.
Article
CAS
PubMed
Google Scholar
Al-Qadiri HM, Al-Holy MA, Lin M, Alami NI, Cavinato AG, Rasco BA. Rapid detection and identification of Pseudomonas aeruginosa and Escherichia coli as pure and mixed cultures in bottled drinking water using fourier transform infrared spectroscopy and multivariate analysis. J Agric Food Chem. 2006;54:5749–54.
Article
CAS
PubMed
Google Scholar
Naumann D, Fijala V, Labischinski H. The differentiation and identification of pathogenic bacteria using FT-IR and multivariate statistical analysis. Mikrochim Acta. 1988;94:373–7.
Article
Google Scholar
Hossion AM, Otsuka N, Kandahary RK, Tsuchiya T, Ogawa W, Iwado A, et al. Design, synthesis, and biological evaluation of a novel series of quercetin diacylglucosides as potent anti-MRSA and anti-VRE agents. Bioorg Med Chem. 2010;20:5349–52.
Article
CAS
Google Scholar
Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int J Food Sci. 2010;45:1250–4.
Article
CAS
Google Scholar
Ramos FA, Takaishi Y, Shirotori M, Kawaguchi Y, Tsuchiya K, Shibata H, et al. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J Agric Food Chem. 2006;54:3551–7.
Article
CAS
PubMed
Google Scholar
Vaquero MJR, Alberto MR, de Nadra MCM. Antibacterial effect of phenolic compounds from different wines. Food Control. 2007;18:93–101.
Article
Google Scholar
Basri DF, Zin NM, Bakar NS, Rahmat F, Mohtar M. Synergistic effects of phytochemicals and oxacillin on laboratory passage-derived vancomycin -intermediate Staphylococcus aureus strain. J Med Sci. 2008;8:131–6.
Article
CAS
Google Scholar
Bravo A, Anacona JR. Metal complexes of the flavonoid quercetin: antibacterial properties. Trans Met Chem. 2001;26:20–3.
Article
CAS
Google Scholar
Eumkeb G, Chukrathok S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant Enterobacter cloacae. Phytomedicine. 2013;20:262–9.
Article
CAS
PubMed
Google Scholar
Tzouvelekis LS, Zissis NP, Gazouli M, Tzelepi E, Legakis NJ. In vitro comparative assessment of beta-lactamase inhibitors and their penicillin combinations against selected enterobacteria. Int J Antimicrob Agents. 1997;8:193–7.
Article
CAS
PubMed
Google Scholar
Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B, Drewelow B, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001;41:492–9.
Article
CAS
PubMed
Google Scholar
Murota K, Matsuda N, Kashino Y, Fujikura Y, Nakamura T, Kato Y, et al. alpha-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch Biochem Biophys. 2010;501:91–7.
Article
CAS
PubMed
Google Scholar