Carruthers BM, et al. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270(4):327–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuda K, et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994;121(12):953–9.
Article
CAS
PubMed
Google Scholar
Carruthers BM, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols. Journal of chronic fatigue syndrome. 2003;11(1):7–115.
Article
Google Scholar
Siegel SD, et al. Impaired natural immunity, cognitive dysfunction, and physical symptoms in patients with chronic fatigue syndrome: preliminary evidence for a subgroup? J Psychosom Res. 2006;60(6):559–66.
Article
PubMed
Google Scholar
Maher KJ, Klimas NG, Fletcher MA. Chronic fatigue syndrome is associated with diminished intracellular perforin. Clinical & Experimental Immunology. 2005;142(3):505–11.
CAS
Google Scholar
Brenu EW, et al. Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med. 2012;10(1):88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huth T, et al. Pilot study of natural killer cells in chronic fatigue syndrome/myalgic encephalomyelitis and multiple sclerosis. Scand J Immunol. 2016;83(1):44–51.
Article
CAS
PubMed
Google Scholar
Nijs J, Frémont M. Intracellular immune dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome: state of the art and therapeutic implications. Expert Opin Ther Targets. 2008;12(3):281–9.
Article
CAS
PubMed
Google Scholar
Natelson BH, Haghighi MH, Ponzio NM. Evidence for the presence of immune dysfunction in chronic fatigue syndrome. Clin Diagn Lab Immunol. 2002;9(4):747–52.
CAS
PubMed
PubMed Central
Google Scholar
Curriu M, et al. Screening NK-, B-and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome. J Transl Med. 2013;11(1):68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenu E, et al. Natural killer cells in patients with severe chronic fatigue syndrome. Autoimmunity Highlights. 2013;4(3):69–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fletcher MA, et al. Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidase IV/CD26. PLoS One. 2010;5(5):e10817.
Article
PubMed
PubMed Central
Google Scholar
Brenu EW, et al. Immune and hemorheological changes in chronic fatigue syndrome. J Transl Med. 2010;8(1):1.
Article
PubMed
PubMed Central
Google Scholar
Ojo-Amaize EA, Conley EJ, Peter JB. Decreased natural killer cell activity is associated with severity of chronic fatigue immune dysfunction syndrome. Clin Infect Dis. 1994;18(Supplement 1):S157–9.
Article
PubMed
Google Scholar
Johnston S, et al. The prevalence of chronic fatigue syndrome/ myalgic encephalomyelitis: a meta-analysis. Clin Epidemiol. 2013;5:105–10.
Article
PubMed
PubMed Central
Google Scholar
Rimbaut S, et al. Chronic fatigue syndrome–an update. Acta Clin Belg. 2016;71(5):273–80.
Article
Google Scholar
Prins JB, Van der Meer JW, Bleijenberg G. Chronic fatigue syndrome. Lancet. 2006;367(9507):346–55.
Article
PubMed
Google Scholar
Vivier E, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.
Article
CAS
PubMed
Google Scholar
Trapani JA, et al. Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol. 2000;12(3):323–9.
Article
CAS
PubMed
Google Scholar
Stanietsky N, Mandelboim O. Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett. 2010;584(24):4895–900.
Article
CAS
PubMed
Google Scholar
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart CA, et al. Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci U S A. 2005;102(37):13224–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moretta L. Dissecting CD56dim human NK cells. Blood. 2010;116(19):3689–91.
Article
CAS
PubMed
Google Scholar
Lanier LL, Ruitenberg J, Phillips J. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol. 1988;141(10):3478–85.
CAS
PubMed
Google Scholar
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.
Article
CAS
PubMed
Google Scholar
Stabile H, et al. Multifunctional human CD56low CD16low natural killer cells are the prominent subset in bone marrow of both healthy pediatric donors and leukemic patients. Haematologica. 2015;100(4):489–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smyth MJ, et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42(4):501–10.
Article
CAS
PubMed
Google Scholar
Bryceson YT, et al. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006;107(1):159–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol. 2003;15(3):308–14.
Article
CAS
PubMed
Google Scholar
Smith HR, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci. 2002;99(13):8826–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pegram HJ, et al. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89(2):216–24.
Article
PubMed
Google Scholar
Bryceson YT, et al. Molecular mechanisms of natural killer cell activation. Journal of innate immunity. 2011;3(3):216–26.
Article
CAS
PubMed
Google Scholar
Reefman E, et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol. 2010;184(9):4852–62.
Article
CAS
PubMed
Google Scholar
Smyth MJ, Trapani JA. Granzymes: exogenous porteinases that induce target cell apoptosis. Immunol Today. 1995;16(4):202–6.
Article
CAS
PubMed
Google Scholar
Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol. 2002;2(10):735–47.
Article
CAS
PubMed
Google Scholar
Huth T, et al. Characterization of natural killer cell phenotypes in chronic fatigue Syndrome/Myalgic Encephalomyelitis. J Clin Cell Immunol. 2014;5(223):2.
Google Scholar
Brenu EW, et al. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol. 2013;26(4). https://doi.org/10.1093/intimm/dxt068.
Brenu EW, et al. Immunological abnormalities as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med. 2011;9(1):81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klimas NG, et al. Immunologic abnormalities in chronic fatigue syndrome. J Clin Microbiol. 1990;28(6):1403–10.
CAS
PubMed
PubMed Central
Google Scholar
Huth TK, et al. Natural killer cell cytotoxic activity: measurement of the apoptotic inducing mechanisms. Clin Exp Med Sci. 2013;1:373–86.
Article
Google Scholar
Merkt W, Lorenz H-M, Watzl C. Rituximab induces phenotypical and functional changes of NK cells in a non-malignant experimental setting. Arthritis research & therapy. 2016;18(1):206.
Article
Google Scholar
Bradley A, Ford B, Bansal A. Altered functional B cell subset populations in patients with chronic fatigue syndrome compared to healthy controls. Clinical & Experimental Immunology. 2013;172(1):73–80.
Article
CAS
Google Scholar
Robertson M, et al. Lymphocyte subset differences in patients with chronic fatigue syndrome, multiple sclerosis and major depression. Clinical & Experimental Immunology. 2005;141(2):326–32.
Article
CAS
Google Scholar
Ramos S, et al. Characterisation of B cell Subsets and Receptors in Chronic Fatigue Syndrome Patients. Journal of Clinical and Cell Immunol. 2015;6(1):1000288-1-1000288-5.
Fluge Ø, et al. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS One. 2011;6(10):e26358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fluge Ø, Mella O. Clinical impact of B-cell depletion with the anti-CD20 antibody rituximab in chronic fatigue syndrome: a preliminary case series. BMC Neurol. 2009;9(1):28.
Article
PubMed
PubMed Central
Google Scholar
Fluge Ø, et al. B-lymphocyte depletion in myalgic encephalopathy/chronic fatigue syndrome. an open-label phase II study with rituximab maintenance treatment. PLoS One. 2015;10(7):e0129898.
Article
PubMed
PubMed Central
Google Scholar
Hatjiharissi E, et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood. 2007;110(7):2561–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veeramani S, et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood. 2011;118(12):3347–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capuano C, et al. Anti-CD20 therapy acts via FcγRIIIA to diminish responsiveness of human natural killer cells. Cancer Res. 2015;75(19):4097–108.
Article
CAS
PubMed
Google Scholar
Lunde S, et al. Serum BAFF and APRIL levels, T-lymphocyte subsets, and immunoglobulins after B-cell depletion using the monoclonal anti-CD20 antibody rituximab in myalgic encephalopathy/chronic fatigue syndrome. PLoS One. 2016;11(8):e0161226.
Article
PubMed
PubMed Central
Google Scholar
Aubry J-P, et al. Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry. 1999;37(3):197–204.
Article
CAS
PubMed
Google Scholar
Huth TK, Staines D, Marshall-Gradisnik S. ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56 dim CD16+ and CD56 bright CD16 dim/− natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. J Transl Med. 2016;14(1):97.
Article
PubMed
PubMed Central
Google Scholar
Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1):15–22.
Article
CAS
PubMed
Google Scholar
Flieger D, et al. A novel non-radioactive cellular cytotoxicity test based on the differential assessment of living and killed target and effector cells. J Immunol Methods. 1995;180(1):1–13.
Article
CAS
PubMed
Google Scholar
Ewen C, Kane K, Bleackley R. A quarter century of granzymes. Cell Death Differ. 2012;19(1):28.
Article
CAS
PubMed
Google Scholar
McLaughlin P, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.
Article
CAS
PubMed
Google Scholar
Hertl M, et al. Recommendations for the use of rituximab (anti-CD20 antibody) in the treatment of autoimmune bullous skin diseases. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2008;6(5):366–73.
Article
PubMed
Google Scholar
Fischer L, et al. The anti-lymphoma effect of antibody-mediated immunotherapy is based on an increased degranulation of peripheral blood natural killer (NK) cells. Exp Hematol. 2006;34(6):753–9.
Article
CAS
PubMed
Google Scholar
Cox MC, et al. Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients. Oncoimmunology. 2015;4(3):e990773.
Article
PubMed
PubMed Central
Google Scholar