World Health Organization. Pharmacological treatment of mental disorders in primary health care. Geneva: World Health Organization; 2009.
Wang Z, Whiteside SP, Sim L, Farah W, Morrow AS, Alsawas M, et al. Comparative effectiveness and safety of cognitive behavioral therapy and pharmacotherapy for childhood anxiety disorders: a systematic review and meta-analysis. JAMA Pediatr. 2017;171(11):1049–56.
Article
PubMed
PubMed Central
Google Scholar
Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008;5(2):e45.
Article
PubMed
PubMed Central
Google Scholar
Khan A, Brown WA. Antidepressants versus placebo in major depression: an overview. World Psychiatry. 2015;14(3):294–300.
Article
PubMed
PubMed Central
Google Scholar
Jakobsen JC, Katakam KK, Schou A, Hellmuth SG, Stallknecht SE, Leth-Møller K, et al. Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial sequential analysis. BMC Psychiatry. 2017;17(1):1–28.
Google Scholar
National Collaborating Centre for Mental Health (UK, High-intensity psychological interventions). Depression: the treatment and Management of Depression in adults (updated edition). England: British Psychological Society; 2010.
Maria Michel T, Pulschen D, Thome J. The role of oxidative stress in depressive disorders. Curr Pharm Des. 2012;18(36):5890–9.
Article
Google Scholar
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sacchet C, Mocelin R, Sachett A, Bevilaqua F, Chitolina R, Kuhn F, et al. Antidepressant-like and antioxidant effects of Plinia trunciflora in mice. Evid Based Complement Alternat Med. 2015;2015:601503.
Article
PubMed
PubMed Central
Google Scholar
Cho YS, Kim SK, Ahn CB, Je JY. Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym. 2011;83(4):1617–22.
Article
CAS
Google Scholar
Pasanphan W, Chirachanchai S. Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant. Carbohydr Polym. 2008;72(1):169–77.
Article
CAS
Google Scholar
You BR, Moon HJ, Han YH, Park WH. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol. 2010;48(5):1334–40.
Article
CAS
PubMed
Google Scholar
Singh J, Rai GK, Upadhyay AK, Kumar R, Singh KP. Antloxldant phytochemicals in tomato (Lycopersicon esculentum). Indian J Agricult Sci. 2004;74(1):3–5.
CAS
Google Scholar
Dhingra D, Chhillar R, Gupta A. Antianxiety-like activity of gallic acid in unstressed and stressed mice: possible involvement of nitriergic system. Neurochem Res. 2012;37(3):487–94.
Article
CAS
PubMed
Google Scholar
Chhillar R, Dhingra D. Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam Clin Pharmacol. 2013;27(4):409–18.
Article
CAS
PubMed
Google Scholar
Huang HL, Lin CC, Jeng KCG, Yao PW, Chuang LT, Kuo SL, et al. Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. J Agric Food Chem. 2012;60(9):2328–36.
Article
CAS
PubMed
Google Scholar
Korani MS, Farbood Y, Sarkaki A, Moghaddam HF, Mansouri MT. Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol. 2014;733:62–7.
Article
CAS
PubMed
Google Scholar
Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int. 2006;48(4):263–74.
Article
CAS
PubMed
Google Scholar
Kim YJ. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007;30(6):1052–5.
Article
CAS
PubMed
Google Scholar
Iraji S, Rashidi L, Ganji F. Functionalized Mesoporous silica nanoparticles as a novel antioxidant delivery system. Iran J Chem Eng. 2015;12(4):93.
Google Scholar
Baghirov H, Karaman D, Viitala T, Duchanoy A, Lou YR, Mamaeva V, et al. Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier. PLoS One. 2016;11(8):e0160705.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117(1–2):1–9.
CAS
Google Scholar
Rosenholm M, J., Sahlgren, C., Lindén, M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets. 2011;12(8):1166–86.
Article
CAS
PubMed
Google Scholar
Chen Y, Chen H, Shi J. Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin Drug Deliv. 2014;11(6):917–30.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–27.
Article
CAS
PubMed
Google Scholar
Wu SH, Hung Y, Mou CY. Mesoporous silica nanoparticles as nanocarriers. Chem Commun. 2011;47(36):9972–85.
Article
CAS
Google Scholar
Shahbazi MA, Herranz B, Santos HA. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter. 2012;2(4):296–312.
Article
PubMed
PubMed Central
Google Scholar
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater. 2018;7(4):1700831.
Article
CAS
Google Scholar
Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Florek J, Caillard R, Kleitz F. Evaluation of mesoporous silica nanoparticles for oral drug delivery–current status and perspective of MSNs drug carriers. Nanoscale. 2017;9(40):15252–77.
Article
CAS
PubMed
Google Scholar
Hu H, Nie L, Feng S, Suo J. Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release. Pharmazie. 2013;68(6):401–5.
CAS
PubMed
Google Scholar
Stöber W, Fink A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J Colloid Interface Sci. 1968;26:62.
Fahmy HM, Fathy MM, Abd-Elbadia RA, Elshemey WM. Targeting of Thymoquinone-loaded mesoporous silica nanoparticles to different brain areas: in vivo study. Life Sci. 2019;222:94–102.
Article
CAS
PubMed
Google Scholar
Rashidi L, Vasheghani-Farahani E, Soleimani M, Atashi A, Rostami K, Gangi F, et al. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells. J Nanopart Res. 2014;16(3):1–14.
Article
CAS
Google Scholar
Rashidi L, Vasheghani-Farahani E, Rostami K, Ganji F, Fallahpour M. Mesoporous silica nanoparticles with different pore sizes for delivery of pH-sensitive gallic acid. Asia Pac J Chem Eng. 2014;9(6):845–53.
Article
CAS
Google Scholar
Paré WP. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav. 1994;55(3):433–9.
Article
PubMed
Google Scholar
Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849–54.
Article
CAS
PubMed
Google Scholar
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.
Article
CAS
PubMed
Google Scholar
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.
Article
CAS
PubMed
Google Scholar
Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem. 1995;41(6):892–6.
Article
CAS
PubMed
Google Scholar
Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids. 1994;59(6):383–8.
Article
CAS
PubMed
Google Scholar
Classics Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.
Article
Google Scholar
Gorun V, Proinov I, Băltescu V, Balaban G, Bârzu O. Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations. Anal Biochem. 1978;86(1):324–6.
Article
CAS
PubMed
Google Scholar
Kumar B, Kuhad A, Chopra K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology. 2011;214(4):819–28.
Article
CAS
PubMed
Google Scholar
Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12(1–2):54–61.
Article
CAS
PubMed
Google Scholar
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 2). Trop J Pharm Res. 2013;12(2):265–73.
Google Scholar
Parveen A, Rizvi SHM, Mahdi F, Tripathi S, Ahmad I, Shukla RK, et al. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress. J Nanopart Res. 2014;16(11):1–15.
Article
CAS
Google Scholar
Jampilek J, Zaruba K, Oravec M, Kunes M, Babula P, Ulbrich P, et al. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier. Biomed Res Int. 2015;2015:812673.
Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005;39.23: 9370–9376.
Article
CAS
PubMed
Google Scholar
Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 2010;7(1):1–17.
Article
CAS
Google Scholar
Das D, Yang Y, O'Brien JS, Breznan D, Nimesh S, Bernatchez S, et al. Synthesis and physicochemical characterization of mesoporous nanoparticles. J Nanomater. 2014;2014:176015.
Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.
Article
CAS
PubMed
Google Scholar
Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. 2010;31(32):8350–61.
Article
CAS
PubMed
Google Scholar
Morrison ID. Criterion for electrostatic stability of dispersions at low ionic strength. Langmuir. 1991;7(9):1920–2.
Article
CAS
Google Scholar
Greenwood R, Kendall K. Electroacoustic studies of moderately concentrated colloidal suspensions. J Eur Ceram Soc. 1999;19(4):479–88.
Article
CAS
Google Scholar
Hanaor D, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc. 2012;32(1):235–44.
Article
CAS
Google Scholar
Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, et al. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett. 2017;12(1):1–10.
Article
CAS
Google Scholar
Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5(12):1408–13.
Article
CAS
PubMed
Google Scholar
Goldberg I, Rokem JS. Organic and Fatty Acid Production, Microbial, in Encyclopedia of Microbiology (Third Edition); 2009.
Gilhotra N, Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010;1352:167–75.
Article
CAS
PubMed
Google Scholar
Anane R, Creppy EE. Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase+ catalase and vitamins E and C. Hum Exp Toxicol. 2001;20(9):477–81.
Article
CAS
PubMed
Google Scholar
Ray A, Chakraborti A, Gulati K. Current trends in nitric oxide research. Cell Mol Biol. 2007;53(1):3–14.
CAS
PubMed
Google Scholar
Fadillioglu E, Erdogan H, Iraz M, Yagmurca M. Effects of caffeic acid phenethyl ester against doxorubicin-induced neuronal oxidant injury. Neurosci Res Commun. 2003;33(2):132–8.
Article
CAS
Google Scholar
Ilhan A, Akyol O, Gurel A, Armutcu F, Iraz M, Oztas E. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Free Radic Biol Med. 2004;37(3):386–94.
Article
CAS
PubMed
Google Scholar
Gülşen İ, Ak H, Çölçimen N, Alp HH, Akyol ME, Demir I, et al. Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurg. 2016;86:243–9.
Article
PubMed
Google Scholar
Kanner J, Harel S, Granit R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids. 1992;27(1):46.
Article
CAS
PubMed
Google Scholar
Dringen R, Hirrlinger J. Glutathione pathways in the brain; 2003.
Book
Google Scholar
Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain: metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.
Article
CAS
PubMed
Google Scholar
Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res Rev. 2005;4(2):288–314.
Article
CAS
PubMed
Google Scholar
Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.
Article
CAS
PubMed
Google Scholar
Mazzetti AP, Fiorile MC, Primavera A, Bello ML. Glutathione transferases and neurodegenerative diseases. Neurochem Int. 2015;82:10–8.
Article
CAS
PubMed
Google Scholar
Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):1–8.
Article
CAS
Google Scholar
Yuan LP, Chen FH, Ling L, Bo H, Chen ZW, Li F, et al. Protective effects of total flavonoids of Bidens bipinnata L. against carbon tetrachloride-induced liver fibrosis in rats. J Pharm Pharmacol. 2008;60(10):1393–402.
Article
CAS
PubMed
Google Scholar
Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, et al. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience. 2010;166(3):796–807.
Article
CAS
PubMed
Google Scholar
Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, et al. Free radical biology and medicine: it's a gas, man! Am J Phys Regul Integr Comp Phys. 2006;291(3):R491–511.
CAS
Google Scholar
Castagné V, Rougemont M, Cuenod M, Do KQ. Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat's development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiol Dis. 2004;15(1):93–105.
Article
PubMed
CAS
Google Scholar
Suarez-Lopez JR, Hood N, Suárez-Torres J, Gahagan S, Gunnar MR, López-Paredes D. Associations of acetylcholinesterase activity with depression and anxiety symptoms among adolescents growing up near pesticide spray sites. Int J Hyg Environ Health. 2019;222(7):981–90.
Article
CAS
PubMed
Google Scholar
Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC. Protective effect of L-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem. 2000;33(2):103–6.
Article
CAS
PubMed
Google Scholar
Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldberg JA, Reynolds JNJ. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience. 2011;198:27–43.
Article
CAS
PubMed
Google Scholar
Rotundo RL. Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol. 2003;32(5):743–66.
Article
CAS
PubMed
Google Scholar
Khadrawy YA, Mourad IM, Mohammed HS, Noor NA, Ezz HSA. A study on the possible therapeutic role of Panax ginseng extract against a rat model of Parkinson’s disease induced by intrastriatal rotenone injection. Int J Clin Exp Med. 2016;9(2):3831–41.
CAS
Google Scholar
Yousef MI. Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology. 2004;199(1):47–57.
Article
CAS
PubMed
Google Scholar
Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci. 2000;3(2):120–5.
Article
CAS
PubMed
Google Scholar
Stavinoha WB, Weintraub ST, Modak AT. Regional concentrations of choline and acetylcholine in the rat brain. J Neurochem. 1974;23(4):885–6.
Article
CAS
PubMed
Google Scholar
Hoover DB, Muth EA, Jacobowitz DM. A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. Brain Res. 1978;153(2):295–306.
Article
CAS
PubMed
Google Scholar
Baumeister AA, Hawkins MF, Uzelac SM. The myth of reserpine-induced depression: role in the historical development of the monoamine hypothesis. J Hist Neurosci. 2003;12(2):207–20.
Article
PubMed
Google Scholar
Erickson JD, Eiden LE, Hoffman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci. 1992;89(22):10993–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Freitas CM, Busanello A, Schaffer LF, Peroza LR, Krum BN, Leal CQ, et al. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology. 2016;233(3):457–67.
Article
PubMed
CAS
Google Scholar
Ramachandraih CT, Subramanyam N, Bar KJ, Baker G, Yeragani VK. Antidepressants: from MAOIs to SSRIs and more. Indian J Psychiatry. 2011;53(2):180.
Article
PubMed
PubMed Central
Google Scholar
Nayeem N, Asdaq SMB, Salem H, AHEl-Alfqy, S. Gallic acid: a promising lead molecule for drug development. J Appl Pharmacol. 2016;8(2):1–4.
Article
CAS
Google Scholar
Rang HP, Dale MM, Ritter JM, Moore PK. Pharmacology. 5th ed. Edinburgh: Churchill Livingstone; 2003.
Google Scholar