Background
In previous studies we showed that in addition to the cyclic nucleotides (cNMPs) cAMP and cGMP, mammalian cells also contain cCMP and cUMP [for review see [1], [2]]. cCMP and cUMP are generated by the bacterial exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus anthracis as well as nitric oxide (NO)-stimulated soluble guanylyl cyclase (sGC). cCMP and cUMP activate cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG) and cyclic nucleotide-regulated ion channels (HCN channels). cUMP, but not cCMP, is degraded by several known phosphodiesterases (PDEs). cCMP and cUMP are also exported from cells via multidrug resistance proteins (MRPs 4 and 5). These findings suggest that cCMP and cUMP constitute second messenger molecules with distinct signalling properties.
Pseudomonas aeruginosa is an important pathogenic bacterium, specifically in patients with cystic fibrosis. P. aeruginosa injects effector proteins into host cells via the type III secretion system and, thereby, manipulates their functions. One of the effector proteins of P. aeruginosa is ExoY. ExoY possesses structural similarity with CyaA and EF in the catalytic domain and was assumed to constitute an adenylyl cyclase (AC) [3]. However, the cAMP-forming capacity of ExoY is rather low. More recently, it has been shown that ExoY is capable of producing large quantities of cGMP [4]. On this background, we examined the question whether ExoY also exhibits cytidylyl- and uridylyl cyclase activity.