Background
Plasmodium falciparum cGMP-dependent protein kinase (pfPKG) is a validated therapeutic target of malaria. As a key regulator of its life cycle, pfPKG plays a crucial role in both the sexual and asexual blood-stages that cause malaria pathology. Inhibiting pfPKG blocks proliferation and transmission of the parasite [1, 2]. However the development of pfPKG-specific inhibitor has been greatly hampered by the lack of high-resolution structure information to guide drug design.
Targeting the ATP binding site of pfPKG is an approach commonly associated with low specificity and toxicity [3]. Therefore, we aim to target a domain that is unique to this kinase, the cyclic nucleotide binding (CNB) domain. Since previous studies demonstrated the fourth-cyclic nucleotide binding (CNB-D) domain of pfPKG to be the most important for the kinase activation [4] we focused on this domain to understand its role in cGMP dependent activation.