Graziani F, Biasucci LM, Cialdella P, Liuzzo G, Giubilato S, Della Bona R, Pulcinelli FM, Iaconelli A, Mingrone G, Crea F: Thromboxane production in morbidly obese subjects. Am J Cardiol. 2011, 107: 1656-1661. 10.1016/j.amjcard.2011.01.053.
Article
CAS
PubMed
Google Scholar
Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, Kuriyama S, Karibe H, Okada Y, Takahata O, Taniguchi T, Iijima T, Iwasaki H, Narumiya S, Ushikubi F: Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med. 2005, 11: 562-566. 10.1038/nm1231.
Article
CAS
PubMed
Google Scholar
Coker SJ, Parratt JR, Ledingham IM, Zeitlin IJ: Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature. 1981, 291: 323-324. 10.1038/291323a0.
Article
CAS
PubMed
Google Scholar
Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT: Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med. 1981, 304: 685-691. 10.1056/NEJM198103193041201.
Article
CAS
PubMed
Google Scholar
Montalescot G, Drobinski G, Maclouf J, Maillet F, Salloum J, Ankri A, Kazatchkine M, Eugene L, Thomas D, Grosgogeat Y: Evaluation of thromboxane production and complement activation during myocardial ischemia in patients with angina pectoris. Circulation. 1991, 84: 2054-2062. 10.1161/01.CIR.84.5.2054.
Article
CAS
PubMed
Google Scholar
Moncada S, Vane JR: Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev. 1978, 30: 293-331.
CAS
PubMed
Google Scholar
Hamberg M, Svensson J, Samuelsson B: Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975, 72: 2994-2998. 10.1073/pnas.72.8.2994.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patrono C, Bachmann F, Baigent C, Bode C, De Caterina R, Charbonnier B, Fitzgerald D, Hirsh J, Husted S, Kvasnicka J, Montalescot G, Garcia Rodriguez LA, Verheugt F, Vermylen J, Wallentin L, Priori SG, Alonso Garcia MA, Blanc JJ, Budaj A, Cowie M, Dean V, Deckers J, Fernandez Burgos E, Lekakis J, Lindahl B, Mazzotta G, Morais J, Oto A, Smiseth OA, Ferreira R: Expert consensus document on the use of antiplatelet agents: the task force on the use of antiplatelet agents in patients with atherosclerotic cardiovascular disease of the European society of cardiology. Eur Heart J. 2004, 25: 166-181. 10.1016/j.ehj.2003.10.013.
Article
PubMed
Google Scholar
Wacker MJ, Tehrani RN, Smoot RL, Orr JA: Thromboxane A(2) mimetic evokes a bradycardia mediated by stimulation of cardiac vagal afferent nerves. Am J Physiol Heart Circ Physiol. 2002, 282: H482-H490.
Article
CAS
PubMed
Google Scholar
Wacker MJ, Best SR, Kosloski LM, Stachura CJ, Smoot RL, Porter CB, Orr JA: Thromboxane A2-induced arrhythmias in the anesthetized rabbit. Am J Physiol Heart Circ Physiol. 2006, 290: H1353-H1361.
Article
CAS
PubMed
Google Scholar
Baldassare JJ, Tarver AP, Henderson PA, Mackin WM, Sahagan B, Fisher GJ: Reconstitution of thromboxane A2 receptor-stimulated phosphoinositide hydrolysis in isolated platelet membranes: involvement of phosphoinositide-specific phospholipase C-beta and GTP-binding protein Gq. Biochem J. 1993, 291 (Pt 1): 235-240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorn GW, Becker MW: Thromboxane A2 stimulated signal transduction in vascular smooth muscle. J Pharmacol Exp Ther. 1993, 265: 447-456.
CAS
PubMed
Google Scholar
Huang JS, Ramamurthy SK, Lin X, Le Breton GC: Cell signalling through thromboxane A2 receptors. Cell Signal. 2004, 16: 521-533. 10.1016/j.cellsig.2003.10.008.
Article
CAS
PubMed
Google Scholar
Shenker A, Goldsmith P, Unson CG, Spiegel AM: The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem. 1991, 266: 9309-9313.
CAS
PubMed
Google Scholar
Walsh M, Foley JF, Kinsella BT: Investigation of the role of the carboxyl-terminal tails of the alpha and beta isoforms of the human thromboxane A(2) receptor (TP) in mediating receptor:effector coupling. Biochim Biophys Acta. 2000, 1496: 164-182. 10.1016/S0167-4889(00)00031-8.
Article
CAS
PubMed
Google Scholar
Wacker MJ, Kosloski LM, Gilbert WJ, Touchberry CD, Moore DS, Kelly JK, Brotto M, Orr JA: Inhibition of thromboxane A2-induced arrhythmias and intracellular calcium changes in cardiac myocytes by blockade of the inositol trisphosphate pathway. J Pharmacol Exp Ther. 2009, 331: 917-924. 10.1124/jpet.109.157677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura F, Minshall RD, Le Breton GC, Rabito SF: Thromboxane A2 mediates the stimulation of inositol 1,4,5-trisphosphate production and intracellular calcium mobilization by bradykinin in neonatal rat ventricular cardiomyocytes. Hypertension. 1996, 28: 444-449. 10.1161/01.HYP.28.3.444.
Article
CAS
PubMed
Google Scholar
Dogan S, Turnbaugh D, Zhang M, Cofie DQ, Fugate RD, Kem DC: Thromboxane A2 receptor mediation of calcium and calcium transients in rat cardiomyocytes. Life Sci. 1997, 60: 943-952. 10.1016/S0024-3205(97)00024-6.
Article
CAS
PubMed
Google Scholar
Hoffmann P, Heinroth-Hoffmann I, Toraason M: Alterations by a thromboxane A2 analog (U46619) of calcium dynamics in isolated rat cardiomyocytes. J Pharmacol Exp Ther. 1993, 264: 336-344.
CAS
PubMed
Google Scholar
Ter Keurs HE, Boyden PA: Calcium and arrhythmogenesis. Physiol Rev. 2007, 87: 457-506. 10.1152/physrev.00011.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bers DM, Guo T: Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci. 2005, 1047: 86-98. 10.1196/annals.1341.008.
Article
CAS
PubMed
Google Scholar
Mudd JO, Kass DA: Tackling heart failure in the twenty-first century. Nature. 2008, 451: 919-928. 10.1038/nature06798.
Article
CAS
PubMed
Google Scholar
Harr MW, Distelhorst CW: Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harbor Perspect Biol. 2010, 2: a005579-
Article
CAS
Google Scholar
Lin H, Li HF, Lian WS, Chen HH, Lan YF, Lai PF, Cheng CF: Thromboxane A2 mediates iron-overload cardiomyopathy in mice through calcineurin-nuclear factor of activated T cells signaling pathway. Circ J Off J Jpn Circ Soc. 2013, 77: 2586-2595.
CAS
Google Scholar
Wang Y, Li C, Liu Z, Shi T, Wang Q, Li D, Wu Y, Han J, Guo S, Tang B, Wang W: DanQi Pill protects against heart failure through the arachidonic acid metabolism pathway by attenuating different cyclooxygenases and leukotrienes B4. BMC Complement Altern Med. 2014, 14: 67-10.1186/1472-6882-14-67.
Article
PubMed
PubMed Central
Google Scholar
Zhang Z, Vezza R, Plappert T, McNamara P, Lawson JA, Austin S, Pratico D, Sutton MS, FitzGerald GA: COX-2-dependent cardiac failure in Gh/tTG transgenic mice. Circ Res. 2003, 92: 1153-1161. 10.1161/01.RES.0000071749.22027.45.
Article
CAS
PubMed
Google Scholar
Lai J, Jin H, Yang R, Winer J, Li W, Yen R, King KL, Zeigler F, Ko A, Cheng J, Bunting S, Paoni NF: Prostaglandin F2 alpha induces cardiac myocyte hypertrophy in vitro and cardiac growth in vivo. Am J Physiol. 1996, 271: H2197-H2208.
CAS
PubMed
Google Scholar
Shizukuda Y, Buttrick PM: Protein kinase C-zeta modulates thromboxane A(2)-mediated apoptosis in adult ventricular myocytes via Akt. Am J Physiol Heart Circ Physiol. 2002, 282: H320-H327.
Article
CAS
PubMed
Google Scholar
Touchberry CD, Green TM, Tchikrizov V, Mannix JE, Mao TF, Carney BW, Girgis M, Vincent RJ, Wetmore LA, Dawn B, Bonewald LF, Stubbs JR, Wacker MJ: FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am J Physiol Endocrinol Metab. 2013, 304: E863-E873. 10.1152/ajpendo.00596.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ: HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998, 95: 2979-2984. 10.1073/pnas.95.6.2979.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong HM, Song EJ, Oh E, Kabir MH, Lee C, Yoo YS: Endothelin-1- and isoproterenol-induced differential protein expression and signaling pathway in HL-1 cardiomyocytes. Proteomics. 2011, 11: 283-297. 10.1002/pmic.201000018.
Article
CAS
PubMed
Google Scholar
Kang BY, Khan JA, Ryu S, Shekhar R, Seung KB, Mehta JL: Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc Pharmacol. 2010, 55: 417-424. 10.1097/FJC.0b013e3181ca4ba1.
Article
PubMed
Google Scholar
Brunt KR, Tsuji MR, Lai JH, Kinobe RT, Durante W, Claycomb WC, Ward CA, Melo LG: Heme oxygenase-1 inhibits pro-oxidant induced hypertrophy in HL-1 cardiomyocytes. Exp Biol Med. 2009, 234: 582-594. 10.3181/0810-RM-312.
Article
CAS
Google Scholar
Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M: Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem. 2005, 280: 4553-4567. 10.1074/jbc.M411787200.
Article
CAS
PubMed
Google Scholar
Jehle J, Staudacher I, Wiedmann F, Schweizer P, Becker R, Katus H, Thomas D: Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. Br J Pharmacol. 2012, 167: 1563-1572. 10.1111/j.1476-5381.2012.02117.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen AD, Poulsen KA, Lambert IH, Pedersen SF: HL-1 mouse cardiomyocyte injury and death after simulated ischemia and reperfusion: roles of pH, Ca2+-independent phospholipase A2, and Na+/H+ exchange. Am J Physiol Cell Physiol. 2009, 296: C1227-C1242. 10.1152/ajpcell.00370.2008.
Article
CAS
PubMed
Google Scholar
Gonzalez-Juanatey JR, Iglesias MJ, Alcaide C, Pineiro R, Lago F: Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of alpha1-adrenergic blockade. Circulation. 2003, 107: 127-131. 10.1161/01.CIR.0000043803.20822.D1.
Article
CAS
PubMed
Google Scholar
Kitta K, Day RM, Ikeda T, Suzuki YJ: Hepatocyte growth factor protects cardiac myocytes against oxidative stress-induced apoptosis. Free Radic Biol Med. 2001, 31: 902-910. 10.1016/S0891-5849(01)00663-3.
Article
CAS
PubMed
Google Scholar
Touchberry CD, Elmore CJ, Nguyen TM, Andresen JJ, Zhao X, Orange M, Weisleder N, Brotto M, Claycomb WC, Wacker MJ: Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem Biophys Res Commun. 2011, 416: 45-50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Touchberry CD, Bales IK, Stone JK, Rohrberg TJ, Parelkar NK, Nguyen T, Fuentes O, Liu X, Qu CK, Andresen JJ, Valdivia HH, Brotto M, Wacker MJ: Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J Biol Chem. 2010, 285: 40312-40321. 10.1074/jbc.M110.179689.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M: Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol. 2008, 294: H724-H735. 10.1152/ajpheart.00979.2007.
Article
CAS
PubMed
Google Scholar
Hirsh PD, Firth BG, Campbell WB, Dehmer GJ, Willerson JT, Hillis LD: Effects of provocation on transcardiac thromboxane in patients with coronary artery disease. Am J Cardiol. 1983, 51: 727-733. 10.1016/S0002-9149(83)80123-4.
Article
CAS
PubMed
Google Scholar
Hirsh PD, Firth BG, Campbell WB, Willerson JT, Hillis LD: Influence of blood sampling site and technique on thromboxane concentrations in patients with ischemic heart disease. Am Heart J. 1982, 104: 234-237. 10.1016/0002-8703(82)90198-3.
Article
CAS
PubMed
Google Scholar
Neri Serneri GG, Gensini GF, Abbate R, Prisco D, Rogasi PG, Laureano R, Casolo GC, Fantini F, Di Donato M, Dabizzi RP: Abnormal cardiocoronary thromboxane A2 production in patients with unstable angina. Am Heart J. 1985, 109: 732-738. 10.1016/0002-8703(85)90631-3.
Article
CAS
PubMed
Google Scholar
Santilli F, Davi G, Basili S, Lattanzio S, Cavoni A, Guizzardi G, De Feudis L, Traisci G, Pettinella C, Paloscia L, Minuz P, Meneguzzi A, Ciabattoni G, Patrono C: Thromboxane and prostacyclin biosynthesis in heart failure of ischemic origin: effects of disease severity and aspirin treatment. J Thromb Haemost JTH. 2010, 8: 914-922.
Article
CAS
PubMed
Google Scholar
Chu LM, Robich MP, Bianchi C, Feng J, Liu Y, Xu SH, Burgess T, Sellke FW: Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Am J Physiol Heart Circ Physiol. 2012, 302: H479-H488. 10.1152/ajpheart.00146.2011.
Article
CAS
PubMed
Google Scholar
Robich MP, Chu LM, Burgess TA, Feng J, Bianchi C, Sellke FW: Effects of selective cyclooxygenase-2 and nonselective cyclooxygenase inhibition on myocardial function and perfusion. J Cardiovasc Pharmacol. 2011, 57: 122-130. 10.1097/FJC.0b013e3182010a96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Francois H, Athirakul K, Howell D, Dash R, Mao L, Kim HS, Rockman HA, Fitzgerald GA, Koller BH, Coffman TM: Prostacyclin protects against elevated blood pressure and cardiac fibrosis. Cell Metab. 2005, 2: 201-207. 10.1016/j.cmet.2005.08.005.
Article
CAS
PubMed
Google Scholar
LaPointe MC, Mendez M, Leung A, Tao Z, Yang XP: Inhibition of cyclooxygenase-2 improves cardiac function after myocardial infarction in the mouse. Am J Physiol Heart Circ physiol. 2004, 286: H1416-H1424.
Article
CAS
PubMed
Google Scholar
Lasserre B, Huu AP, Navarro-Delmasure C, Dossou-Gbete V: Binding of a thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor antagonist to rabbit and pig heart membrane protein. Prostaglandins Leukot Essent Fat Acids. 1992, 47: 153-157. 10.1016/0952-3278(92)90153-A.
Article
CAS
Google Scholar
Bowling N, Dube GP, Kurtz WL, Brune KA, Saussy DL, Dorn GW, Mais DE: Characterization of thromboxane A2/prostaglandin H2 binding sites in guinea pig cardiac membrane preparations. J Mol Cell Cardiol. 1994, 26: 915-923. 10.1006/jmcc.1994.1109.
Article
CAS
PubMed
Google Scholar
Li Y, Kang JX, Leaf A: Differential effects of various eicosanoids on the production or prevention of arrhythmias in cultured neonatal rat cardiac myocytes. Prostaglandins. 1997, 54: 511-530.
Article
CAS
PubMed
Google Scholar
Yatani A, Frank K, Sako H, Kranias EG, Dorn GW: Cardiac-specific overexpression of Galphaq alters excitation-contraction coupling in isolated cardiac myocytes. J Mol Cell Cardiol. 1999, 31: 1327-1336. 10.1006/jmcc.1999.0966.
Article
CAS
PubMed
Google Scholar
Dorn GW, Force T: Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005, 115: 527-537. 10.1172/JCI24178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Yokota R, Tang S, Ashton AW, Ware JA: Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circ Res. 2000, 87: 739-745. 10.1161/01.RES.87.9.739.
Article
CAS
PubMed
Google Scholar
Jariyawat S, Takeda M, Kobayashi M, Endou H: Thromboxane A2 mediates cisplatin-induced apoptosis of renal tubule cells. Biochem Mol Biol Int. 1997, 42: 113-121.
CAS
PubMed
Google Scholar
Ushikubi F, Aiba Y, Nakamura K, Namba T, Hirata M, Mazda O, Katsura Y, Narumiya S: Thromboxane A2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. J Exp Med. 1993, 178: 1825-1830. 10.1084/jem.178.5.1825.
Article
CAS
PubMed
Google Scholar
Ramsammy LS, Josepovitz C, Kaloyanides GJ: Gentamicin inhibits agonist stimulation of the phosphatidylinositol cascade in primary cultures of rabbit proximal tubular cells and in rat renal cortex. J Pharmacol Exp Ther. 1988, 247: 989-996.
CAS
PubMed
Google Scholar
Jacobsen AN, Du XJ, Lambert KA, Dart AM, Woodcock EA: Arrhythmogenic action of thrombin during myocardial reperfusion via release of inositol 1,4,5-triphosphate. Circulation. 1996, 93: 23-26. 10.1161/01.CIR.93.1.23.
Article
CAS
PubMed
Google Scholar
Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, Li WH, Lipp P: The role of inositol 1,4,5-trisphosphate receptors in Ca(2+) signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol. 2002, 541: 395-409. 10.1113/jphysiol.2001.013411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proven A, Roderick HL, Conway SJ, Berridge MJ, Horton JK, Capper SJ, Bootman MD: Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J Cell Sci. 2006, 119: 3363-3375. 10.1242/jcs.03073.
Article
CAS
PubMed
Google Scholar
Chu WF, Sun HL, Dong DL, Qiao GF, Yang BF: Increasing intracellular calcium of guinea pig ventricular myocytes induced by platelet activating factor through IP3 pathway. Basic Clin Pharmacol Toxicol. 2006, 98: 104-109. 10.1111/j.1742-7843.2006.pto_313.x.
Article
CAS
PubMed
Google Scholar
Ibarra C, Estrada M, Carrasco L, Chiong M, Liberona JL, Cardenas C, Diaz-Araya G, Jaimovich E, Lavandero S: Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem. 2004, 279: 7554-7565. 10.1074/jbc.M311604200.
Article
CAS
PubMed
Google Scholar
Zima AV, Blatter LA: Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol. 2004, 555: 607-615. 10.1113/jphysiol.2003.058529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR: Aspirin "resistance" and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008, 336: 195-198. 10.1136/bmj.39430.529549.BE.
Article
PubMed
PubMed Central
Google Scholar
Eikelboom JW, Hirsh J, Weitz JI, Johnston M, Yi Q, Yusuf S: Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002, 105: 1650-1655. 10.1161/01.CIR.0000013777.21160.07.
Article
CAS
PubMed
Google Scholar
Halushka MK, Halushka PV: Why are some individuals resistant to the cardioprotective effects of aspirin? Could it be thromboxane A2?. Circulation. 2002, 105: 1620-1622. 10.1161/01.CIR.0000015422.86569.52.
Article
PubMed
Google Scholar
Brothers TE, Robison JG, Elliott BM, Boggs JM, Halushka PV: Thromboxane A2 receptor density increases during chronic exposure to thromboxane A2 receptor antagonists after porcine carotid bypass. Cardiovasc Surg. 1997, 5: 92-98.
Article
CAS
PubMed
Google Scholar