Global and Regional Trends. UNICEF DATA. Available from: //data.unicef.org/topic/hivaids/global-regional-trends/. [cited 2017 Dec 28].
ZWE_2018_countryreport.pdf. Available from: http://www.unaids.org/sites/default/files/country/documents/ZWE_2018_countryreport.pdf. [cited 2019 Jan 21].
Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med. 2002;136(3):21–30.
Google Scholar
Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chawana TD, Katzenstein D, Nathoo K, Ngara B, CFB N. Evaluating an enhanced adherence intervention among HIV positive adolescents failing atazanavir/ritonavir-based second line antiretroviral treatment at a public health clinic. J AIDS HIV Res. 2017;9(1):17–30.
Article
PubMed
PubMed Central
Google Scholar
Makadzange AT, Higgins-Biddle M, Chimukangara B, et al. Clinical, Virologic, Immunologic Outcomes and Emerging HIV Drug Resistance Patterns in Children and Adolescents in Public ART Care in Zimbabwe. Plos One. 2015;10(12) Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678607/. [cited 2017 June 13].
Zeleke A. Prevalence of antiretroviral treatment failure and associated factors in HIV infected children on antiretroviral therapy at Gondar University hospital, retrospective cohort study. Int J Med Med Sci. 2016;8(11):125–32.
Article
Google Scholar
Yassin S, Gebretekle GB. Magnitude and predictors of antiretroviral treatment failure among HIV-infected children in Fiche and Kuyu hospitals, Oromia region, Ethiopia: a retrospective cohort study. Pharmacol Res Perspect. 2017;5(1) Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461638/. [cited 2017 June 13].
Adejumo OA, Malee KM, Ryscavage P, Hunter SJ, Taiwo BO. Contemporary issues on the epidemiology and antiretroviral adherence of HIV-infected adolescents in sub-Saharan Africa: a narrative review. J Int AIDS Soc. 2015;18(1) Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575412/. [cited 2017 June 13].
Nglazi MD, Kranzer K, Holele P, et al. Treatment outcomes in HIV-infected adolescents attending a community-based antiretroviral therapy clinic in South Africa. BMC Infect Dis. 2012;12:21.
Article
PubMed
PubMed Central
Google Scholar
Okawa S, Chirwa M, Ishikawa N, et al. Longitudinal adherence to antiretroviral drugs for preventing mother-to-child transmission of HIV in Zambia. BMC Pregnancy Childbirth. 2015;15:258.
Article
PubMed
PubMed Central
Google Scholar
Bonner K, Mezochow A, Roberts T, Ford N, Cohn J. Viral load monitoring as a tool to reinforce adherence: a systematic review. J Acquir Immune Defic Syndr 1999. 2013;64(1):74–8.
Article
Google Scholar
Müller AD, Jaspan HB, Myer L, et al. Standard measures are inadequate to monitor pediatric adherence in a resource-limited setting. AIDS Behav. 2011;15(2):422–31.
Article
PubMed
Google Scholar
Burack G, Gaur S, Marone R, Petrova A. Adherence to antiretroviral therapy in pediatric patients with human immunodeficiency virus (HIV-1). J Pediatr Nurs. 2010;25(6):500–4.
Article
PubMed
Google Scholar
Chawana TD, Gandhi M, Nathoo K, et al. Defining a cut-off for atazanavir in hair samples associated with virological failure among adolescents failing second-line antiretroviral treatment. J Acquir Immune Defic Syndr. 2017;76(1):55–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beumer JH, Bosman IJ, Maes RA. Hair as a biological specimen for therapeutic drug monitoring. Int J Clin Pract. 2001;55(6):353–7.
CAS
PubMed
Google Scholar
Gandhi M, Greenblatt RM. Hair it is: the long and short of monitoring antiretroviral treatment. Ann Intern Med. 2002;137(8):696–7.
Article
PubMed
Google Scholar
Gandhi M, Ameli N, Bacchetti P, et al. Protease inhibitor levels in hair samples strongly predict Virologic responses to HIV treatment. AIDS Lond Engl. 2009;23(4):471–8.
Article
CAS
Google Scholar
Gandhi M, Ameli N, Bacchetti P, et al. Atazanavir concentration in hair is the strongest predictor of outcomes on antiretroviral therapy. Clin Infect Dis Off Publ Infect Dis Soc Am. 2011;52(10):1267–75.
Article
CAS
Google Scholar
Hickey MD, Salmen CR, Tessler RA, et al. Antiretroviral concentrations in small hair samples as a feasible marker of adherence in rural Kenya. J Acquir Immune Defic Syndr 1999. 2014;66(3):311–5.
Article
CAS
Google Scholar
Duval X, Peytavin G, Breton G, et al. Hair versus plasma concentrations as indicator of indinavir exposure in HIV-1-infected patients treated with indinavir/ritonavir combination. AIDS Lond Engl. 2007;21(1):106–8.
Article
CAS
Google Scholar
Kidwell DA, Blank DL. Comments on the paper by W.a. Baumgartner and V.a. Hill: sample preparation techniques. Forensic Sci Int. 1993;63(1):137–43.
Article
CAS
Google Scholar
DuPont RL, Baumgartner WA. Drug testing by urine and hair analysis: complementary features and scientific issues. Forensic Sci Int. 1995;70(1):63–76.
Article
CAS
PubMed
Google Scholar
Baumgartner WA, Hill VA. Comments on the paper by David L. Blank and David a. Kidwell: external contamination of hair by cocaine: an issue in forensic interpretation. Forensic Sci Int. 1993;63(1):157–60.
Article
CAS
Google Scholar
Al-Delaimy WK. Hair as a biomarker for exposure to tobacco smoke. Tob Control. 2002;11(3):176–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khajuria H, Nayak BP. Detection and accumulation of morphine in hair using GC–MS. Egypt J Forensic Sci. 2016;6(4):337–41.
Article
Google Scholar
Kronstrand R, Grundin R, Jonsson J. Incidence of opiates, amphetamines, and cocaine in hair and blood in fatal cases of heroin overdose. Forensic Sci Int. 1998;92(1):29–38.
Article
CAS
PubMed
Google Scholar
Minoli M, Angeli I, Ravelli A, Gigli F, Lodi F. Detection and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in hair by GC/MS/MS in negative chemical ionization mode (NCI) with a simple and rapid liquid/liquid extraction. Forensic Sci Int. 2012;218(1–3):49–52.
Article
CAS
PubMed
Google Scholar
Lee D, Milman G, Barnes AJ, Goodwin RS, Hirvonen J, Huestis MA. Oral fluid cannabinoids in chronic, daily Cannabis smokers during sustained, monitored abstinence. Clin Chem. 2011;57(8):1127–36.
Article
CAS
PubMed
Google Scholar
Schaffer M, Hill V, Cairns T. Hair analysis for cocaine: the requirement for effective wash procedures and effects of drug concentration and hair porosity in contamination and decontamination. J Anal Toxicol. 2005;29(5):319–26.
Article
CAS
PubMed
Google Scholar
Drugs-in-Hair-FAQ.pdf. Available from: http://www.vifm.org/wp-content/uploads/2015/06/Drugs-in-Hair-FAQ.pdf. [cited 2017 Jul 4].
Dhoro M, Zvada S, Ngara B, et al. CYP2B6*6, CYP2B6*18, Body weight and sex are predictors of efavirenz pharmacokinetics and treatment response: population pharmacokinetic modeling in an HIV/AIDS and TB cohort in Zimbabwe. BMC Pharmacol Toxicol. 2015;16:4.
Article
PubMed
PubMed Central
Google Scholar
Nyakutira C, Röshammar D, Chigutsa E, et al. High prevalence of the CYP2B6 516G→T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol. 2008;64(4):357–65.
Article
CAS
PubMed
Google Scholar
Mukonzo JK, Röshammar D, Waako P, et al. A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br J Clin Pharmacol. 2009;68(5):690–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemaura T, Nhachi C, Masimirembwa C. Impact of gender, weight and CYP2B6 genotype on efavirenz exposure in patients on HIV/AIDS and TB treatment: implications for individualising therapy. Afr J Pharm Pharmacol. 2012;6(29):2188–93.
CAS
Google Scholar
Foissac F, Blanche S, Dollfus C, et al. Population pharmacokinetics of atazanavir/ritonavir in HIV-1-infected children and adolescents. Br J Clin Pharmacol. 2011;72(6):940–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Denti P, Decloedt EH, Ren Y, Karlsson MO, McIlleron H. Model-based evaluation of the pharmacokinetic differences between adults and children for lopinavir and ritonavir in combination with rifampicin. Br J Clin Pharmacol. 2013;76(5):741–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
NONMEM® - ICON plc. Available from: http://www.iconplc.com/innovation/nonmem/. [cited 2017 Jun 20].
Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2(6):e50.
Article
CAS
Google Scholar
Anderson BJ, Holford NHG. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.
Article
CAS
PubMed
Google Scholar
Lowenthal ED, Bakeera-Kitaka S, Marukutira T, Chapman J, Goldrath K, Ferrand RA. Perinatally acquired HIV infection in adolescents from sub-Saharan Africa: a review of emerging challenges. Lancet Infect Dis. 2014;14(7):627–39.
Article
PubMed
PubMed Central
Google Scholar
Agwu AL, Fairlie L. Antiretroviral treatment, management challenges and outcomes in perinatally HIV-infected adolescents. J Int AIDS Soc. 2013;16:18579.
Article
PubMed
PubMed Central
Google Scholar
Gichane MW, Sullivan KA, Shayo AM, et al. Caregiver role in HIV medication adherence among HIV-infected orphans in Tanzania. AIDS Care. 2018;30(6):701–5.
Article
PubMed
Google Scholar