Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
Article
PubMed
Google Scholar
American Cancer Society. Breast Cancer Facts & Figures 2019-2020. Atlanta: American Cancer society, Inc.; 2019.
Google Scholar
Turashvili G, Brogi E. Tumor Heterogeneity in Breast Cancer. Front Med (Lausanne). 2017;4:227. https://doi.org/10.3389/fmed.2017.00227.
Article
Google Scholar
Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics. 2015;7(5):847–62. https://doi.org/10.2217/epi.15.10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Gun M, Hong XY. Induced Tamoxifen resistance is mediated by increased methylation of E-cadherin in estrogen receptor-expressing breast Cancer cells. Sci Rep. 2019;9(1):14140. https://doi.org/10.1038/s41598-019-50749-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Connolly R, Stearns V. Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia. 2012;17(3–4):191–204. https://doi.org/10.1007/s10911-012-9263-3.
Article
PubMed
PubMed Central
Google Scholar
Feng Q, Zhang Z, Shea MJ, et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 2014;24(7):809–19. https://doi.org/10.1038/cr.2014.71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandhu R, Rivenbark AG, Coleman WB. Enhancement of chemotherapeutic efficacy in hypermethylator breast cancer cells through targeted and pharmacologic inhibition of DNMT3b. Breast Cancer Res Treat. 2012;131(2):385–99. https://doi.org/10.1007/s10549-011-1409-2.
Article
CAS
PubMed
Google Scholar
Li J, Hao D, Wang L, et al. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep. 2017;7:4035. https://doi.org/10.1038/s41598-017-04406-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segovia-Mendoza M, Morales-Montor J. Immune tumor microenvironment in breast cancer and the participation of estrogen and its receptors in cancer physiopathology. Front Immunol. 2019;10:348. https://doi.org/10.3389/fimmu.2019.00348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J Interf Cytokine Res. 2015;35(1):1–16. https://doi.org/10.1089/jir.2014.0026.
Article
CAS
Google Scholar
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast Cancer. Pathobiology. 2015;82(3–4):142–52. https://doi.org/10.1159/000430499.
Article
CAS
PubMed
Google Scholar
Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727–41. https://doi.org/10.1016/s0006-2952(98)00307-4.
Article
CAS
PubMed
Google Scholar
Pritchard JE, Dillon PM, Conaway MR, Silva CM, Parsons SJ. A mechanistic study of the effect of doxorubicin/adriamycin on the estrogen response in a breast cancer model. Oncology. 2012;83(6):305–20. https://doi.org/10.1159/000341394.
Article
CAS
PubMed
Google Scholar
Ponnusamy L, Mahalingaiah PKS, Singh KP. Treatment schedule and estrogen receptor-status influence acquisition of doxorubicin resistance in breast cancer cells. Eur J Pharm Sci. 2017;104:424–33. https://doi.org/10.1016/j.ejps.2017.04.020.
Article
CAS
PubMed
Google Scholar
de Paula Porto M, Da Silva GN, Luperini BCO, et al. Citral and eugenol modulate DNA damage and proinflammatory mediator genes in murine peritoneal macrophages. Mol Biol Rep. 2014;41(11):7043–51.
Article
Google Scholar
Fouad AA, Yacoubi MT. Mechanisms underlying the protective effect of eugenol in rats with acute doxorubicin cardiotoxicity. Arch Pharm Res. 2011;34(5):821–8. https://doi.org/10.1007/s12272-011-0516-2.
Article
CAS
PubMed
Google Scholar
El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (Chemobrain) in experimental rat model: impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol. 2018;55(7):5727–40. https://doi.org/10.1007/s12035-017-0797-7.
Article
CAS
PubMed
Google Scholar
Al-Sharif I, Remmal A, Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 2013;13:600. https://doi.org/10.1186/1471-2407-13-600.
Article
PubMed
PubMed Central
Google Scholar
Al Wafai R, El-Rabih W, Katerji M, et al. Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase. Sci Rep. 2017;7:43730. https://doi.org/10.1038/srep43730.
Article
PubMed
PubMed Central
Google Scholar
McCall B, McPartland CK, Moore R, Frank-Kamenetskii A, Booth BW. Effects of Astaxanthin on the proliferation and migration of breast Cancer cells in vitro. Antioxidants (Basel). 2018;7(10):135. https://doi.org/10.3390/antiox7100135.
Article
CAS
Google Scholar
Pramod K, Ansari SH, Ali J. Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun. 2010. https://doi.org/10.1177/1934578X1000501236.
Thapa D, Richardson AJ, Zweifel B, Wallace RJ, Gratz SW. Genoprotective effects of essential oil compounds against oxidative and methylated DNA damage in human Colon Cancer cells. J Food Sci. 2019;84(7):1979–85. https://doi.org/10.1111/1750-3841.14665.
Article
CAS
PubMed
Google Scholar
Rodrigues TG, Fernandes A Jr, Sousa JP, Bastos JK, Sforcin JM. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Nat Prod Res. 2009;23(4):319–26. https://doi.org/10.1080/14786410802242679.
Article
CAS
PubMed
Google Scholar
Barboza JN, Bezerra Filho C DSM, Silva RO, JVR M, de Sousa DP. An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. Oxidative Med Cell Longev. 2018;2018:3957262. https://doi.org/10.1155/2018/3957262.
Article
CAS
Google Scholar
Li R, Wu H, Zhuo WW, et al. Astaxanthin normalizes epigenetic modifications of bovine somatic cell cloned embryos and decreases the generation of lipid peroxidation. Reprod Domest Anim. 2015;50(5):793–9. https://doi.org/10.1111/rda.12589.
Article
CAS
PubMed
Google Scholar
Yang Y, Fuentes F, Shu L, et al. Epigenetic CpG methylation of the promoter and reactivation of the expression of GSTP1 by Astaxanthin in human prostate LNCaP cells. AAPS J. 2017;19(2):421–30. https://doi.org/10.1208/s12248-016-0016-x.
Article
CAS
PubMed
Google Scholar
Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond). 2010;7:18. https://doi.org/10.1186/1743-7075-7-18.
Article
CAS
Google Scholar
Lin KH, Lin KC, Lu WJ, Thomas PA, Jayakumar T, Sheu JR. Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo. Int J Mol Sci. 2015;17(1):44. https://doi.org/10.3390/ijms17010044.
Article
CAS
PubMed Central
Google Scholar
Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–12. https://doi.org/10.1093/jnci/82.13.1107.
Article
CAS
PubMed
Google Scholar
Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11. https://doi.org/10.1385/1-59259-811-0:301.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, j. Anal Biochem. 1976;72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3.11.
Article
CAS
PubMed
Google Scholar
Tang F, Ouyang H, Yang JZ, Borchardt RT. Bidirectional transport of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein, across MDCK-MDR1 cell monolayers. J Pharm Sci. 2004;93(5):1185–94. https://doi.org/10.1002/jps.20046.
Article
CAS
PubMed
Google Scholar
Sayed-Ahmed MM. Multi drug resistance to cancer chemotherapy: genes involved and blockers. Saudi Pharm J. 2007;15:161–75.
CAS
Google Scholar
Sayed-Ahmed MM, Al-Shabanah OA, Hafez MM, Aleisa AM, Al-Rejaie SS. Inhibition of gene expression of heart fatty acid binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model. Eur J Pharmacol. 2010;640(1–3):143–9.
Article
CAS
PubMed
Google Scholar
Christowitz C, Davis T, Isaacs A, et al. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer. 2019;19:757. https://doi.org/10.1186/s12885-019-5939-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vidhya N, Devaraj SN. Induction of apoptosis by eugenol in human breast cancer cells. Indian J Exp Biol. 2011;49(11):871–8.
CAS
PubMed
Google Scholar
Sharifi S, Barar J, Hejazi MS, Samadi N. Doxorubicin Changes Bax /Bcl-xL Ratio, Caspase-8 and 9 in Breast Cancer Cells. Adv Pharm Bull. 2015;5(3):351–9. https://doi.org/10.15171/apb.2015.049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Júnior PL, Câmara DA, Costa AS, et al. Apoptotic effect of eugenol envolves G2/M phase abrogation accompanied by mitochondrial damage and clastogenic effect on cancer cell in vitro. Phytomedicine. 2016;23(7):725–35. https://doi.org/10.1016/j.phymed.2016.03.014.
Article
CAS
PubMed
Google Scholar
Kominami K, Nakabayashi J, Nagai T, et al. The molecular mechanism of apoptosis upon caspase-8 activation: quantitative experimental validation of a mathematical model. Biochim Biophys Acta. 2012;1823(10):1825–40. https://doi.org/10.1016/j.bbamcr.2012.07.003.
Article
CAS
PubMed
Google Scholar
Vijay K, Sowmya PR, Arathi BP, et al. Low-dose doxorubicin with carotenoids selectively alters redox status and upregulates oxidative stress-mediated apoptosis in breast cancer cells. Food Chem Toxicol. 2018;118:675–90. https://doi.org/10.1016/j.fct.2018.06.027.
Article
CAS
PubMed
Google Scholar
AlQahtani AA, Osman AM, Al-Kreathy HM, Al-harthy SE, Al-malky HS, AL Nasser MS, Kamel FO, Alaama MN, Damanhouri ZA. Chemosensitizing effects of marine astaxanthin on the anti-cancer activity of doxorubicin in tumor bearing mice. Int J Cancer Res. 2019;15:1–8.
Article
CAS
Google Scholar
Trebunova M, Laputkova G, Slaba E, Lacjakova K, Verebova A. Effects of docetaxel, doxorubicin and cyclophosphamide on human breast cancer cell line MCF-7. Anticancer Res. 2012;32(7):2849–54.
CAS
PubMed
Google Scholar
Gustafson DL, Long ME. Alterations in P-glycoprotein expression in mouse tissues by doxorubicin: implications for pharmacokinetics in multiple dosing regimens. Chem Biol Interact. 2001 Oct 25;138(1):43–57.
Article
CAS
PubMed
Google Scholar
Lahmy S, Viallet P, Salmon JM. Is reduced accumulation of Hoechst 33342 in multidrug resistant cells related to P-glycoprotein activity? Cytometry. 1995;19(2):126–33. https://doi.org/10.1002/cyto.990190207.
Article
CAS
PubMed
Google Scholar
van der Sandt IC, Blom-Roosemalen MC, de Boer AG, Breimer DD. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur J Pharm Sci. 2000;11(3):207–14. https://doi.org/10.1016/s0928-0987(00)00097-x.
Article
PubMed
Google Scholar
Dartier J, Lemaitre E, Chourpa I, et al. ATP-dependent activity and mitochondrial localization of drug efflux pumps in doxorubicin-resistant breast cancer cells. Biochim Biophys Acta Gen Subj. 2017;1861(5 Pt A):1075–84. https://doi.org/10.1016/j.bbagen.2017.02.019.
Article
CAS
PubMed
Google Scholar
Ponce de León V, Barrera-Rodríguez R. Changes in P-glycoprotein activity are mediated by the growth of a tumour cell line as multicellular spheroids. Cancer Cell Int. 2005;5(1):20. Published 2005 Jul 7. https://doi.org/10.1186/1475-2867-5-20.
Article
CAS
PubMed
Google Scholar
Yi JL, Shi S, Shen YL, et al. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int J Clin Exp Pathol. 2015;8(2):1116–27.
PubMed
PubMed Central
Google Scholar
Lu YP, Liu SY, Sun H, Wu XM, Li JJ, Zhu L. Neuroprotective effect of astaxanthin on H(2)O(2)-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 2010;1360:40–8. https://doi.org/10.1016/j.brainres.2010.09.016.
Article
CAS
PubMed
Google Scholar
Kim SH, Lim JW, Kim H. Astaxanthin inhibits mitochondrial dysfunction and Interleukin-8 expression in Helicobacter pylori-infected gastric epithelial cells. Nutrients. 2018;10(9):1320. https://doi.org/10.3390/nu10091320.
Article
CAS
PubMed Central
Google Scholar
Zhou M, Li L, Li L, et al. Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting. Acta Pharm Sin B. 2019;9(3):615–25. https://doi.org/10.1016/j.apsb.2018.11.005.
Article
PubMed
Google Scholar
Anderson JM, Heindl LM, Bauman PA, Ludi CW, Dalton WS, Cress AE. Cytokeratin expression results in a drug-resistant phenotype to six different chemotherapeutic agents. Clin Cancer Res. 1996;2(1):97–105.
CAS
PubMed
Google Scholar
Hsiao YL, Hsieh TZ, Liou CJ, et al. Characterization of protein marker expression, tumorigenicity, and doxorubicin chemoresistance in two new canine mammary tumor cell lines. BMC Vet Res. 2014;10:229. https://doi.org/10.1186/s12917-014-0229-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazdani M, BidmeshkipourA., & SisakhtnezhadS. Evaluating the effect of Eugenol on the expression of genes involved in the Immunomodulatoty potency of mouse Mesenchymal stem cells in vitro. J Cell Mol Res. 2018;10(1):1–10. https://doi.org/10.22067/jcmr.v10i1.70380.
Article
CAS
Google Scholar
Wang M, Zhang J, Song X, et al. Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells. Food Chem Toxicol. 2013;56:450–8. https://doi.org/10.1016/j.fct.2013.03.004.
Article
CAS
PubMed
Google Scholar
Kwok TT, Sutherland RM. Epidermal growth factor reduces resistance to doxorubicin. Int J Cancer. 1991;49(1):73–6. https://doi.org/10.1002/ijc.2910490114.
Article
CAS
PubMed
Google Scholar
Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst. 1993;85(16):1327–33. https://doi.org/10.1093/jnci/85.16.1327.
Article
CAS
PubMed
Google Scholar
Ma M, Ma Y, Zhang GJ, et al. Eugenol alleviated breast precancerous lesions through HER2/PI3K-AKT pathway-induced cell apoptosis and S-phase arrest. Oncotarget. 2017;8(34):56296–310. https://doi.org/10.18632/oncotarget.17626.
Article
PubMed
PubMed Central
Google Scholar
Muto Y, Fujii J, Shidoji Y, et al. Growth retardation in human cervical dysplasia-derived cell lines by beta-carotene through down-regulation of epidermal growth factor receptor. Am J Clin Nutr. 1995;62:1535S–40S.
Article
CAS
PubMed
Google Scholar
Chan HJ, Petrossian K, Chen S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol. 2016;161:73–83. https://doi.org/10.1016/j.jsbmb.2015.07.018.
Article
CAS
PubMed
Google Scholar
Liu H, Talalay P. Relevance of anti-inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention. Proc Natl Acad Sci U S A. 2013;110(47):19065–70. https://doi.org/10.1073/pnas.1318247110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almstrup K, Fernández MF, Petersen JH, Olea N, Skakkebaek NE, Leffers H. Dual effects of phytoestrogens result in u-shaped dose-response curves. Environ Health Perspect. 2002;110(8):743–8. https://doi.org/10.1289/ehp.02110743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi HD, Youn YK, Shin WG. Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant Foods Hum Nutr. 2011;66(4):363–9. https://doi.org/10.1007/s11130-011-0258-9.
Article
CAS
PubMed
Google Scholar
Baek AE, Nelson ER. The contribution of cholesterol and its metabolites to the pathophysiology of breast Cancer. Horm Cancer. 2016;7(4):219–28. https://doi.org/10.1007/s12672-016-0262-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Simpson ER, Brown KA. Aromatase overexpression in dysfunctional adipose tissue links obesity to postmenopausal breast cancer. J Steroid Biochem Mol Biol. 2015;153:35–44 [PubMed: 26209254].
Article
CAS
PubMed
Google Scholar
Felzen V, Hiebel C, Koziollek-Drechsler I, et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis. 2015;6:e1812. https://doi.org/10.1038/cddis.2015.181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Zhao G, Zhang D, An W, Lai H, Li X, Lin X. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol. 2018;53:1363–73. https://doi.org/10.3892/ijo.2018.4465.
Article
CAS
PubMed
Google Scholar
Kim SH, Kim H. Astaxanthin Modulation of Signaling Pathways That Regulate Autophagy. Mar Drugs. 2019;17(10):546. Published 2019 Sep 23. https://doi.org/10.3390/md17100546.
Article
CAS
PubMed Central
Google Scholar
Jia Y, Wu C, Kim J, Kim B, Lee SJ. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. J Nutr Biochem. 2016;28:9–18. https://doi.org/10.1016/j.jnutbio.2015.09.015.
Article
CAS
PubMed
Google Scholar
Zhang H, Yang W, Li Y, Hu L, Dai Y, Chen J, Xu S, Xu X, Jiang H. Astaxanthin ameliorates cerulein-induced acute pancreatitis in mice. Int Immunopharmacol. 2018;56:18–28.
Article
CAS
PubMed
Google Scholar
Gülçin İ. Antioxidant activity of eugenol: a structure-activity relationship study. J Med Food. 2011;14(9):975–85. https://doi.org/10.1089/jmf.2010.0197.
Article
CAS
PubMed
Google Scholar
Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, Szentesi P, Keller-Pintér A. Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. Oxidative Medicine and Cellular Longevity, 2019; 2019.
Google Scholar
Underwood BR, Imarisio S, Fleming A, et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum Mol Genet. 2010;19(17):3413–29. https://doi.org/10.1093/hmg/ddq253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YL, Yang PM, Shun CT, Wu MS, Weng JR, Chen CC. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy. 2010;6(8):1057–65.
Article
CAS
PubMed
Google Scholar
Mrakovcic M, Fröhlich LF. Regulation of HDAC inhibitor-triggered autophagy. SF Onco Cancer Res J. 2017;1:2–4.
Google Scholar
Yang Y, Bae M, Park YK, et al. Histone deacetylase 9 plays a role in the antifibrogenic effect of astaxanthin in hepatic stellate cells. J Nutr Biochem. 2017;40:172–7. https://doi.org/10.1016/j.jnutbio.2016.11.003.
Article
CAS
PubMed
Google Scholar
Pan L, Lu J, Wang X, et al. Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. Cancer. 2007;109(8):1676–88. https://doi.org/10.1002/cncr.22585.
Article
CAS
PubMed
Google Scholar
Jung DJ, Jin DH, Hong SW, et al. Foxp3 expression in p53-dependent DNA damage responses. J Biol Chem. 2010;285(11):7995–8002. https://doi.org/10.1074/jbc.M109.047985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeh JL, Hsu JH, Hong YS, et al. Eugenolol and glycerylisoeugenol suppress LPS-induced iNOS expression by downregulating NF-κB AND AP-1 through inhibition of MAPKS and AKT/IκBα signaling pathways in macrophages. Int J Immunopathol Pharmacol. 2011;24(2):345–56.
Article
CAS
PubMed
Google Scholar
Hussain K, Brahmbhatt A, Priyani M, Ahmed TA. Rizvi, and C. Sharma. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother Radiopharm. 2011;26(5):519–27.
Article
CAS
PubMed
Google Scholar
Islam SS, Al-Sharif I, Sultan A, Al-Mazrou A, Remmal A, Aboussekhra A. Eugenol potentiates cisplatin anticancer activity through inhibition of ALDH-positive breast oxidative medicine and cellular longevity cancer stem cells and the NF-κB signaling pathway. Mol Carcinog. 2018;57(3):333–46.
Article
CAS
PubMed
Google Scholar
Priyadarshini L, Aggarwal A. Astaxanthin inhibits cytokines production and inflammatory gene expression by suppressing IkappaB kinase-dependent nuclear factor kappaB activation in pre and postpartum Murrah buffaloes during different seasons. Vet World. 2018;11:782–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakao R, Nelson OL, Park JS, Mathison BD, Thompson PA, Chew BP. Effect of dietary astaxanthin at different stages of mammary tumor initiation in BALB/c mice. Anticancer Res. 2010;30(6):2171–5.
CAS
PubMed
Google Scholar
Yuan J-P, Peng J, Yin K, Wang J-H. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55(1):150–65.
Article
CAS
PubMed
Google Scholar
Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 2011;16(4):355–64.
PubMed
Google Scholar
AlQahtani A, Osman A-M, Damanhouri Z, Al-Kreathy H, Al-Malky H, Ramadan W, Alharthi S, Kamel F. Cardioprotective effect of marine Astaxanthin on doxorubicin-induced Cardiotoxicity in Normal rats. J Pharm Res Int. 2019;27(3):1–11. https://doi.org/10.9734/jpri/2019/v27i330170.
Article
CAS
Google Scholar