Lin CY, Lee CH, Chuang YH, et al. Membrane protein-regulated networks across human cancers. Nat Commun. 2019;10:3131.
Article
Google Scholar
Lecuit T, Lenne PF. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol. 2007;8:633–44.
Article
CAS
Google Scholar
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120.
Article
CAS
Google Scholar
Nacke M, Sandilands E, Nikolatou K, et al. An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nat Commun. 2021;12:1623.
Article
CAS
Google Scholar
Yaginuma T, Kushiro K, Takai M. Unique Cancer Migratory Behaviors in Confined Spaces of Microgroove Topography with Acute Wall Angles. Sci Rep. 2020;10:6110.
Article
CAS
Google Scholar
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep Prog Phys. 2019;82(6): 064602.
Article
CAS
Google Scholar
Young AGH, Bennewith KL. Ionizing Radiation Enhances Breast Tumor Cell Migration In Vitro. Radiat Res. 2017;188(4):381–91.
Article
CAS
Google Scholar
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol. 2020;8:394.
Article
Google Scholar
Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, Xin HB, Wang JB. How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr. 2013;7(5):395–403.
Article
Google Scholar
Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor ST, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.
Article
CAS
Google Scholar
Schubert J, Khosrawipour T, Pigazzi A, Kulas J, Bania J, Migdal P, Arafkas M, Khosrawipour V. Evaluation of Cell-detaching Effect of EDTA in Combination with Oxaliplatin for a Possible Application in HIPEC After Cytoreductive Surgery: A Preliminary in-vitro Study. Curr Pharm Des. 2019;25(45):4813–9.
Article
CAS
Google Scholar
Li F, Qi J, Qin C, Fu Z, Ren W. Taurolidine promotes cell apoptosis by enhancing GRIM-19 expression in liver cancer. Oncol Rep. 2018;40(6):3743–51.
CAS
PubMed
Google Scholar
Buchholz M, Majchrzak-Stiller B, Hahn S, Vangala D, Pfirrmann RW, Uhl W, Braumann C, Chromik AM. Innovative substance 2250 as a highly promising anti-neoplastic agent in malignant pancreatic carcinoma - in vitro and in vivo. BMC Cancer. 2017;17(1):216.
Article
CAS
Google Scholar
Chromik AM, Hahn SA, Daigeler A, Flier A, Bulut D, May C, Harati K, Roschinsky J, Sülberg D, Weyhe D, Mittelkötter U, Uhl W. Gene expression analysis of cell death induction by taurolidine in different malignant cell lines. BMC Cancer. 2010;10:595.
Article
CAS
Google Scholar
Schneider A, Sack U, Rothe K, Bennek J. Peritoneal taurolidine lavage in children with localised peritonitis due to appendicitis. Pediatr Surg Int. 2005;21(6):445–8.
Article
Google Scholar
Sosa Barrios RH, Álvarez Nadal M, Burguera Vion V, Campillo Trapero C, López Melero E, Fernández Lucas M, Rivera Gorrín ME. Relapsing peritonitis and taurolidine peritoneal catheter lock: One center experience. J Vasc Access. 2021;22(2):261–5.
Article
Google Scholar
Rosenblatt J, Reitzel RA, Vargas-Cruz N, Chaftari AM, Hachem R, Raad II. Comparative Efficacies of Antimicrobial Catheter Lock Solutions for Fungal Biofilm Eradication in an in Vitro Model of Catheter-Related Fungemia. J Fungi (Basel). 2017;3(1):7.
Article
Google Scholar
Handrup MM, Fuursted K, Funch P, Møller JK, Schrøder H. Biofilm formation in long-term central venous catheters in children with cancer: a randomized controlled open-labelled trial of taurolidine versus heparin. APMIS. 2012;10:794–801.
Article
Google Scholar
Olthof ED, Versleijen MW, Huisman-de Waal G, Feuth T, Kievit W, Wanten GJ. Taurolidine lock is superior to heparin lock in the prevention of catheter related bloodstream infections and occlusions. PLoS ONE. 2014;9(11): e111216.
Article
Google Scholar
Schubert J, Khosrawipour V, Chaudhry H, Arafkas M, Knoefel WT, Pigazzi A, Khosrawipour T. Comparing the cytotoxicity of taurolidine, mitomycin C, and oxaliplatin on the proliferation of in vitro colon carcinoma cells following pressurized intra-peritoneal aerosol chemotherapy (PIPAC). World J Surg Oncol. 2019;17(1):93.
Article
Google Scholar
Schubert J, Khosrawipour T, Reinhard S, Arafkas M, Martino A, Bania J, Pieczka M, Pigazzi A, Khosrawipour V. The concept of foam as a drug carrier for intraperitoneal chemotherapy, feasibility, cytotoxicity and characteristics. Sci Rep. 2020;10(1):10341.
Article
CAS
Google Scholar
Neary PM, Hallihan P, Wang JH, Pfirrmann RW, Bouchier-Hayes DJ, Redmond HP. The evolving role of taurolidine in cancer therapy. Ann Surg Oncol. 2010;17(4):1135–43.
Article
Google Scholar
Fahrner R, Möller A, Press AT, Kortgen A, Kiehntopf M, Rauchfuss F, Settmacher U, Mosig AS. Short-term treatment with taurolidine is associated with liver injury. BMC Pharmacol Toxicol. 2017;18(1):61.
Article
Google Scholar
Arlt MJ, Walters DK, Banke IJ, Steinmann P, Puskas GJ, Bertz J, Rentsch KM, Ehrensperger F, Born W, Fuchs B. The antineoplastic antibiotic taurolidine promotes lung and liver metastasis in two syngeneic osteosarcoma mouse models and exhibits severe liver toxicity. Int J Cancer. 2012;131(5):E804–12.
Article
CAS
Google Scholar
Abramjuk C, Bueschges M, Schnorr J, Jung K, Staack A, Lein M. Divergent effects of taurolidine as potential anti-neoplastic agent: inhibition of bladder carcinoma cells in vitro and promotion of bladder tumor in vivo. Oncol Rep. 2009;22(2):409–14.
CAS
PubMed
Google Scholar
Fink M, Al Mamun Bhuyan A, Zacharopoulou N, Lang F. Taurolidine sensitivity of eryptosis, the suicidal erythrocyte death. Cell Physiol Biochem. 2018;51(2):501–12.
Article
CAS
Google Scholar
Elekonawo FMK, van Eden WJ, van der Plas WY, Ewalds RSG, de Jong LAW, Bremers AJA, Hemmer PHJ, Kok NFM, Kruijff S, Aalbers AGJ, de Reuver PR. Effect of intraperitoneal chemotherapy concentration on morbidity and survival. BJS Open. 2020;4(2):293–300.
Article
CAS
Google Scholar
Verhulst J. Hyperthermic intraperitoneal chemoperfusion with high dose oxaliplatin: Influence of perfusion temperature on postoperative outcome and survival. F1000Res. 2013; 2: 179. doi: https://doi.org/10.12688/f1000research.2-179.v2.
Simkens GA, van Oudheusden TR, Braam HJ, et al. Treatment related mortality after cytoreductive surgery and HIPEC in patients with colorectal peritoneal carcinomatosis is underestimated by conventional parameters. Ann Surg Oncol. 2016;23(1):99–105.
Article
Google Scholar
Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol. 2011;18(6):1575–81.
Article
Google Scholar