Sung JJY, Ng SC, Chan FKL, Chiu HM, Kim HS, Matsuda T, et al. An updated Asia Pacific Consensus Recommendations on colorectal cancer screening. Gut. 2015;64:121–32.
Article
CAS
Google Scholar
Adham AN, Hegazy MEF, Naqishbandi AM, Efferth T. Induction of Apoptosis, Autophagy and Ferroptosis by Thymus vulgaris and Arctium lappa Extract in Leukemia and Multiple Myeloma Cell Lines. Molecules. 2020;25:5016. https://doi.org/10.3390/molecules25215016.
Article
CAS
Google Scholar
Adham AN, Naqishbandi AM, Efferth T. Cytotoxicity and apoptosis induction by Fumaria officinalis extracts in leukemia and multiple myeloma cell lines. J Ethnopharmacol. 2021;266:113458.
Article
CAS
Google Scholar
Kashiwada Y, Nonaka G-I, Nishioka I, Yamagishi T. Galloyl and hydroxycinnamoylglucoses from rhubarb. Phytochemistry. 1988;27:1473–7. https://doi.org/10.1016/0031-9422(88)80218-8.
Article
CAS
Google Scholar
Tosun F, Akyüz KÇ. Anthraquinones and flavonoids from Rheum ribes. Ankara Univ Eczac Fak Derg. 2003;32:31–5.
Article
CAS
Google Scholar
Naqishbandi AM, Josefsen K, Pedersen ME, Jger AK. Hypoglycemic activity of Iraqi Rheum ribes root extract. Pharm Biol. 2009;47:380–3.
Article
CAS
Google Scholar
Alaadin AM, Al-Khateeb EH, Jäger AK. Antibacterial activity of the Iraqi Rheum ribes root. Pharm Biol. 2007;45:688–90.
Article
Google Scholar
Hong J-Y, Chung H-J, Bae SY, Trung TN, Bae K, Lee SK. Induction of Cell Cycle Arrest and Apoptosis by Physcion, an Anthraquinone Isolated From Rhubarb (Rhizomes of Rheum tanguticum), in MDA-MB-231 Human Breast Cancer Cells. J Cancer Prev. 2014;19:273–8.
Article
Google Scholar
Lu K, Zhang C, Wu W, Zhou M, Tang Y, Peng Y. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis. Mol Med Rep. 2015;12:2689–94.
Article
CAS
Google Scholar
ÇınarAyan İ, Çetinkaya S, Dursun HG, Süntar İ. Bioactive Compounds of Rheum ribes L. and its Anticancerogenic Effect via Induction of Apoptosis and miR-200 Family Expression in Human Colorectal Cancer Cells. Nutr Cancer. 2020;73:1–16. https://doi.org/10.1080/01635581.2020.1792947.
Article
CAS
Google Scholar
Wen Q, Mei L, Ye S, Liu X, Xu Q, Miao J, et al. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-γ. Int Immunopharmacol. 2018;56:90–7.
Article
CAS
Google Scholar
Jeong H-J, Kim H-Y, Kim H-M. Molecular mechanisms of anti-inflammatory effect of chrysophanol, an active component of AST2017-01 on atopic dermatitis in vitro models. Int Immunopharmacol. 2018;54:238–44.
Article
CAS
Google Scholar
Zhao Y, Fang Y, Li J, Duan Y, Zhao H, Gao L, et al. Neuroprotective effects of Chrysophanol against inflammation in middle cerebral artery occlusion mice. Neurosci Lett. 2016;630:16–22.
Article
CAS
Google Scholar
Zhao Y, Fang Y, Zhao H, Li J, Duan Y, Shi W, et al. Chrysophanol inhibits endoplasmic reticulum stress in cerebral ischemia and reperfusion mice. Eur J Pharmacol. 2018;818:1–9.
Article
CAS
Google Scholar
Orbán-Gyapai O, Liktor-Busa E, Kúsz N, Stefkó D, Urbán E, Hohmann J, et al. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitoterapia. 2017;118:101–6.
Article
Google Scholar
Ren L, Li Z, Dai C, Zhao D, Wang Y, Ma C, et al. Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines. Mol Med Rep. 2018;17:4376–82.
PubMed
PubMed Central
Google Scholar
Kim SJ, Kim MC, Lee BJ, Park DH, Hong SH, Um JY. Anti-inflammatory activity of chrysophanol through the suppression of NF-κB/caspase-1 activation in vitro and in vivo. Molecules. 2010;15:6436–51.
Article
CAS
Google Scholar
Lim W, Yang C, Bazer FW, Song G. Chrysophanol Induces Apoptosis of Choriocarcinoma Through Regulation of ROS and the AKT and ERK1/2 Pathways. J Cell Physiol. 2017;232:331–9.
Article
CAS
Google Scholar
Deng M, Xue YJ, Xu LR, Wang QW, Wei J, Ke XQ, et al. Chrysophanol Suppresses Hypoxia-Induced Epithelial-Mesenchymal Transition in Colorectal Cancer Cells. Anat Rec. 2019;302:1561–70.
Article
CAS
Google Scholar
Lu L, Li K, Mao YH, Qu H, Yao B, Zhong WW, et al. Gold-chrysophanol nanoparticles suppress human prostate cancer progression through inactivating AKT expression and inducing apoptosis and ROS generation in vitro and in vivo. Int J Oncol. 2017;51:1089–103.
Article
CAS
Google Scholar
Menger FM, Littau CA. Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc. 1993;115:10083–90. https://doi.org/10.1021/ja00075a025.
Article
CAS
Google Scholar
Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1-4. https://doi.org/10.1016/0378-5173(89)90281-0.
Article
CAS
Google Scholar
Karimpour M, Feizi MAH, Mahdavi M, Krammer B, Verwanger T, Najafi F, et al. Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines. Phytomedicine. 2019;57:183–90.
Article
CAS
Google Scholar
Zibaei Z, Babaei E, RezaieNezhadZamani A, Rahbarghazi R, Azeez HJ. Curcumin-enriched Gemini surfactant nanoparticles exhibited tumoricidal effects on human 3D spheroid HT-29 cells in vitro. Cancer Nanotechnol. 2021;12:1–15. https://doi.org/10.1186/s12645-020-00074-4.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25:402–8.
Article
CAS
Google Scholar
Hernández C, Moreno G, Herrera-R A, Cardona-G W. New hybrids based on curcumin and resveratrol: Synthesis, cytotoxicity and antiproliferative activity against colorectal cancer cells. Molecules. 2021;26:2661.
Article
Google Scholar
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21:559.
Article
Google Scholar
Xie L, Tang H, Song J, Long J, Zhang L, Li X. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol. 2019;71:1475–87.
Article
CAS
Google Scholar
Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23:7794–803.
Article
CAS
Google Scholar
Mohd-Zahid MH, Mohamud R, Che Abdullah CA, Lim J, Alem H, Wan Hanaffi WN, et al. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles. RSC Adv. 2019;10:973–85.
Article
Google Scholar
Azeez HJ, Neri F, Hosseinpour Feizi MA, Babaei E. Transcriptome Profiling of HCT-116 Colorectal Cancer Cells with RNA Sequencing Reveals Novel Targets for Polyphenol Nano Curcumin. Molecules. 2022;27:3470.
Article
CAS
Google Scholar
Bombelli C, Giansanti L, Luciani P, Mancini G. Gemini surfactant based carriers in gene and drug delivery. Curr Med Chem. 2009;16:171–83.
Article
CAS
Google Scholar
Infante MR, Pérez L, Morán MC, Pons R, Mitjans M, Vinardell MP, et al. Biocompatible surfactants from renewable hydrophiles. Eur J lipid Sci Technol. 2010;112:110–21.
Article
CAS
Google Scholar
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27. https://doi.org/10.1038/nrd2591.
Article
CAS
PubMed
Google Scholar
Pandith SA, Hussain A, Bhat WW, Dhar N, Qazi AK, Rana S, et al. Evaluation of anthraquinones from Himalayan rhubarb (Rheum emodi Wall. ex Meissn.) as antiproliferative agents. South African J Bot. 2014;95:1–8. https://doi.org/10.1016/j.sajb.2014.07.012.
Article
CAS
Google Scholar
Keser S, Keser F, Karatepe M, Kaygili O, Tekin S, Turkoglu I, et al. Bioactive contents, In vitro antiradical, antimicrobial and cytotoxic properties of rhubarb (Rheum ribes L.) extracts. Nat Prod Res. 2020;34:3353–7. https://doi.org/10.1080/14786419.2018.1560294.
Article
CAS
PubMed
Google Scholar
Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández D-A, et al. Apoptosis: activation and inhibition in health and disease. Med Sci. 2018;6:54.
Google Scholar
Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19:448.
Article
Google Scholar
Lin F-L, Lin C-H, Ho J-D, Yen J-L, Chang H-M, Chiou GCY, et al. The natural retinoprotectant chrysophanol attenuated photoreceptor cell apoptosis in an N-methyl-N-nitrosourea-induced mouse model of retinal degenaration. Sci Rep. 2017;7:1–13.
Article
Google Scholar
Han N-R, Kim H-Y, Kang S, Kim MH, Yoon KW, Moon P-D, et al. Chrysophanol, an anthraquinone from AST2017-01, possesses the anti-proliferative effect through increasing p53 protein levels in human mast cells. Inflamm Res. 2019;68:569–79.
Article
CAS
Google Scholar
Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, et al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005;65:3745–50.
Article
CAS
Google Scholar
Wang I-K, Lin-Shiau S-Y, Lin J-K. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–25. https://doi.org/10.1016/S0959-8049(99)00168-9.
Article
CAS
PubMed
Google Scholar