Liseth K, Sjo M, Paulsen K, Bruserud O, Ersvaer E. Early pre-engraftment, functional, in vitro responsiveness of T lymphocytes in allotransplanted, acute leukemia patients: proliferation and release of a broad profile of cytokines, possibly predictive of graft-versus-host disease. Eur Cytokine Netw. 2010;21(1):40–9.
CAS
PubMed
Google Scholar
Mackall C, Fry T, Gress R, Peggs K, Storek J, Toubert A, et al. Background to hematopoietic cell transplantation, including post transplant immune recovery. Bone Marrow Transplant. 2009;44(8):457–62.
CAS
PubMed
Google Scholar
Behl D, Porrata LF, Markovic SN, Letendre L, Pruthi RK, Hook CC, et al. Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia. 2006;20(1):29–34.
CAS
PubMed
Google Scholar
Porrata LF, Litzow MR, Tefferi A, Letendre L, Kumar S, Geyer SM, et al. Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia. 2002;16(7):1311–8.
CAS
PubMed
Google Scholar
Parkman R, Cohen G, Carter SL, Weinberg KI, Masinsin B, Guinan E, et al. Successful immune reconstitution decreases leukemic relapse and improves survival in recipients of unrelated cord blood transplantation. Biol Blood Marrow Transplant. 2006;12(9):919–27.
PubMed
Google Scholar
Kim DH, Sohn SK, Won DI, Lee NY, Suh JS, Lee KB. Rapid helper T-cell recovery above 200 x 10 6/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant. 2006;37(12):1119–28.
CAS
PubMed
Google Scholar
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.
CAS
PubMed
Google Scholar
Smith M, Barnett M, Bassan R, Gatta G, Tondini C, Kern W. Adult acute myeloid leukaemia. Crit Rev Oncol Hematol. 2004;50(3):197–222.
PubMed
Google Scholar
Fredly H, Reikvam H, Gjertsen BT, Bruserud O. Disease-stabilizing treatment with all-trans retinoic acid and valproic acid in acute myeloid leukemia: serum hsp70 and hsp90 levels and serum cytokine profiles are determined by the disease, patient age, and anti-leukemic treatment. Am J Hematol. 2012;87(4):368–76.
CAS
PubMed
Google Scholar
Schlenk RF, Frohling S, Hartmann F, Fischer JT, Glasmacher A, del Valle F, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia. 2004;18(11):1798–803.
CAS
PubMed
Google Scholar
Kuendgen A, Knipp S, Fox F, Strupp C, Hildebrandt B, Steidl C, et al. Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol. 2005;84 Suppl 1:61–6.
CAS
PubMed
Google Scholar
Raffoux E, Chaibi P, Dombret H, Degos L. Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica. 2005;90(7):986–8.
CAS
PubMed
Google Scholar
Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K, et al. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer. 2005;104(12):2717–25.
CAS
PubMed
Google Scholar
Venditti A, Stasi R, Del Poeta G, Buccisano F, Aronica G, Bruno A, et al. All-trans retinoic acid and low-dose cytosine arabinoside for the treatment of ‘poor prognosis’ acute myeloid leukemia. Leukemia. 1995;9(7):1121–5.
CAS
PubMed
Google Scholar
Fredly H, Gjertsen BT, Bruserud O. Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clinical epigenetics. 2013;5(1):12.
CAS
PubMed
PubMed Central
Google Scholar
Ryningen A, Stapnes C, Lassalle P, Corbascio M, Gjertsen BT, Bruserud O. A subset of patients with high-risk acute myelogenous leukemia shows improved peripheral blood cell counts when treated with the combination of valproic acid, theophylline and all-trans retinoic acid. Leuk Res. 2009;33(6):779–87.
CAS
PubMed
Google Scholar
Yamauchi T, Kawai Y, Kishi S, Goto N, Urasaki Y, Imamura S, et al. Monitoring of intracellular 1-beta-D-arabinofuranosylcytosine 5′-triphosphate in 1-beta-D-arabinofuranosylcytosine therapy at low and conventional doses. Jpn J Cancer Res. 2001;92(5):546–53.
CAS
PubMed
Google Scholar
Ishikura H, Sawada H, Okazaki T, Mochizuki T, Izumi Y, Yamagishi M, et al. The effect of low dose Ara-C in acute nonlymphoblastic leukaemias and atypical leukaemia. Br J Haematol. 1984;58(1):9–18.
CAS
PubMed
Google Scholar
Ueda T, Matsuyama S, Yamauchi T, Kishi S, Fukushima T, Tsutani H, et al. Clinical pharmacology of intermediate and low-dose cytosine arabinoside (ara-C) therapy in patients with hematologic malignancies. Adv Exp Med Biol. 1998;431:647–51.
CAS
PubMed
Google Scholar
Trus MR, Yang L, Suarez Saiz F, Bordeleau L, Jurisica I, Minden MD. The histone deacetylase inhibitor valproic acid alters sensitivity towards all trans retinoic acid in acute myeloblastic leukemia cells. Leukemia. 2005;19(7):1161–8.
CAS
PubMed
Google Scholar
Ertesvag A, Engedal N, Naderi S, Blomhoff HK. Retinoic acid stimulates the cell cycle machinery in normal T cells: involvement of retinoic acid receptor-mediated IL-2 secretion. J Immunol. 2002;169(10):5555–63.
CAS
PubMed
Google Scholar
Breitman TR, Selonick SE, Collins SJ. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980;77(5):2936–40.
CAS
PubMed
PubMed Central
Google Scholar
DeAngelis LM, Kreis W, Chan K, Dantis E, Akerman S. Pharmacokinetics of ara-C and ara-U in plasma and CSF after high-dose administration of cytosine arabinoside. Cancer Chemother Pharmacol. 1992;29(3):173–7.
CAS
PubMed
Google Scholar
Hiddemann W. Cytosine arabinoside in the treatment of acute myeloid leukemia: the role and place of high-dose regimens. Ann Hematol. 1991;62(4):119–28.
CAS
PubMed
Google Scholar
Bruserud O, Hovland R, Wergeland L, Huang TS, Gjertsen BT. Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a functional characterization of Flt3-ligand effects in AML cell populations with and without genetic Flt3 abnormalities. Haematologica. 2003;88(4):416–28.
CAS
PubMed
Google Scholar
Corsetti MT, Salvi F, Perticone S, Baraldi A, De Paoli L, Gatto S, et al. Hematologic improvement and response in elderly AML/RAEB patients treated with valproic acid and low-dose Ara-C. Leuk Res. 2011;35(8):991–7.
CAS
PubMed
Google Scholar
Lane S, Gill D, McMillan NA, Saunders N, Murphy R, Spurr T, et al. Valproic acid combined with cytosine arabinoside in elderly patients with acute myeloid leukemia has in vitro but limited clinical activity. Leuk Lymphoma. 2012;53(6):1077–83.
CAS
PubMed
Google Scholar
Ryningen A, Ersvaer E, Oyan AM, Kalland KH, Vintermyr OK, Gjertsen BT, et al. Stress-induced in vitro apoptosis of native human acute myelogenous leukemia (AML) cells shows a wide variation between patients and is associated with low BCL-2:Bax ratio and low levels of heat shock protein 70 and 90. Leuk Res. 2006;30(12):1531–40.
CAS
PubMed
Google Scholar
Fredly H, Stapnes Bjornsen C, Gjertsen BT, Bruserud O. Combination of the histone deacetylase inhibitor valproic acid with oral hydroxyurea or 6-mercaptopurin can be safe and effective in patients with advanced acute myeloid leukaemia–a report of five cases. Hematology. 2010;15(5):338–43.
CAS
PubMed
Google Scholar
Hubeek I, Kaspers G-JL, Ossenkoppele GJ, Peters GJ. Deoxynucleoside analogs in cancer therapy. In: Peter GJ, editor. Cancer Drug Discovery and Development. 2006. p. 119–52. View at Google Scholar.
Google Scholar
Cole N, Gibson BE. High-dose cytosine arabinoside in the treatment of acute myeloid leukaemia. Blood Rev. 1997;11(1):39–45.
CAS
PubMed
Google Scholar
Papayannopoulou T, de Ron Torrealba A, Veith R, Knitter G, Stamatoyannopoulos G. Arabinosylcytosine induces fetal hemoglobin in baboons by perturbing erythroid cell differentiation kinetics. Science. 1984;224(4649):617–9.
CAS
PubMed
Google Scholar
Fleming RA, Capizzi RL, Rosner GL, Oliver LK, Smith SJ, Schiffer CA, et al. Clinical pharmacology of cytarabine in patients with acute myeloid leukemia: a cancer and leukemia group B study. Cancer Chemother Pharmacol. 1995;36(5):425–30.
CAS
PubMed
Google Scholar
Kreis W, Chaudhri F, Chan K, Allen S, Budman DR, Schulman P, et al. Pharmacokinetics of low-dose 1-beta-D-arabinofuranosylcytosine given by continuous intravenous infusion over twenty-one days. Cancer Res. 1985;45(12 Pt 1):6498–501.
CAS
PubMed
Google Scholar
Spriggs D, Griffin J, Wisch J, Kufe D. Clinical pharmacology of low-dose cytosine arabinoside. Blood. 1985;65(5):1087–9.
CAS
PubMed
Google Scholar
Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol. 2007;19(5):318–30.
CAS
PubMed
PubMed Central
Google Scholar
Auletta JJ, Lazarus HM. Immune restoration following hematopoietic stem cell transplantation: an evolving target. Bone Marrow Transplant. 2005;35(9):835–57.
CAS
PubMed
Google Scholar
Obeid M, Tesniere A, Panaretakis T, Tufi R, Joza N, van Endert P, et al. Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev. 2007;220:22–34.
CAS
PubMed
Google Scholar
Fredly H, Ersvaer E, Kittang AO, Tsykunova G, Gjertsen BT, Bruserud O. The combination of valproic acid, all-trans retinoic acid and low-dose cytarabine as disease-stabilizing treatment in acute myeloid leukemia. Clinical epigenetics. 2013;5(1):13.
PubMed
PubMed Central
Google Scholar
Cimino G, Lo-Coco F, Fenu S, Travaglini L, Finolezzi E, Mancini M, et al. Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res. 2006;66(17):8903–11.
CAS
PubMed
Google Scholar
Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, et al. Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol. 2001;167(12):6736–44.
CAS
PubMed
Google Scholar
Martinez-Lorenzo MJ, Anel A, Gamen S, Monle nI, Lasierra P, Larrad L, et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol. 1999;163(3):1274–81.
CAS
PubMed
Google Scholar
Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, et al. The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol. 2011;9(6), e1001090.
CAS
PubMed
PubMed Central
Google Scholar
Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol. 2005;35(9):2518–27.
CAS
PubMed
Google Scholar
Chen T, Cao X. Stress for maintaining memory: HSP70 as a mobile messenger for innate and adaptive immunity. Eur J Immunol. 2010;40(6):1541–4.
CAS
PubMed
Google Scholar
Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S. Stress-induced release of HSC70 from human tumors. Cell Immunol. 2003;222(2):97–104.
CAS
PubMed
Google Scholar
Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem. 2003;278(24):21601–6.
CAS
PubMed
Google Scholar