Cui Z, Dewey S, Gomes AV. Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases. Am J cardiovasc Dis. 2011;1(3):274.
CAS
PubMed
PubMed Central
Google Scholar
Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010;122(25):2727–35.
Article
PubMed
Google Scholar
Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35(3):569–82.
Article
CAS
PubMed
Google Scholar
Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8(1):143–64. doi:10.1016/j.hfc.2011.08.011.
Article
PubMed
PubMed Central
Google Scholar
Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33(9):1058–66.
Article
CAS
PubMed
Google Scholar
Shin E, Ko KS, Rhee BD, Han J, Kim N. Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery. Integrative Med Res. 2014;3(4):204–10.
Article
Google Scholar
Dhalla NS, Adameova A, Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol. 2010;24(5):539–46.
Article
CAS
PubMed
Google Scholar
Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac β-adrenergic receptors, and heart failure. Circulation. 2000;101(14):1634–7.
Article
CAS
PubMed
Google Scholar
Gauthaman KK, Saleem MT, Thanislas PT, Prabhu VV, Krishnamoorthy KK, Devaraj NS, et al. Cardioprotective effect of the Hibiscus rosa sinensis flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat. BMC Complement Altern Med. 2006;6(1):32.
Article
PubMed
PubMed Central
Google Scholar
Krenek P, Kmecova J, Kucerova D, Bajuszova Z, Musil P, Gazova A, et al. Isoproterenol‐induced heart failure in the rat is associated with nitric oxide‐dependent functional alterations of cardiac function. Eur J Heart Fail. 2009;11(2):140–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int. 2014;2014:13. doi:10.1155/2014/615312.
Google Scholar
Hori M, Nishida K. Oxidative stress and left ventricular remodeling after myocardial infarction. Cardiovasc Res. 2008;81(3):457-64.
Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–85. doi:10.1016/j.yjmcc.2015.11.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49(2):241–8.
Article
CAS
PubMed
Google Scholar
Davel AP, Brum PC, Rossoni LV. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a Giα-coupled β2-adrenoceptor signaling pathway. PLoS One. 2014;9(3):e91877.
Article
PubMed
PubMed Central
Google Scholar
Upaganlawar A, Gandhi H, Balaraman R. Isoproterenol induced myocardial infarction: protective role of natural products. J Pharmacol Toxicol. 2011;6:1–17.
CAS
Google Scholar
Upaganlawar A, Balaraman R. Cardioprotective effects of lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in wistar rats: a biochemical and histoarchitecture study. J Young Pharm. 2011;3(4):297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers S, The ESC. Brussels office takes shape. Eur Heart J. 2013;34:2491–7.
Article
Google Scholar
Lee B-J, Huang Y-C, Chen S-J, Lin P-T. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition. 2012;28(3):250–5.
Article
CAS
PubMed
Google Scholar
Bliznakov EG. Cardiovascular diseases, oxidative stress and antioxidants: the decisive role of coenzyme Q10. Cardiovasc Res. 1999;43(1):248–9.
Article
CAS
PubMed
Google Scholar
Lee B-J, Tseng Y-F, Yen C-H, Lin P-T. Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary artery disease patients during statins therapy: a randomized, placebo-controlled trial. Nutr J. 2013;12(1):142.
Article
PubMed
PubMed Central
Google Scholar
Kumar A, Kaur H, Devi P, Mohan V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol Ther. 2009;124(3):259–68.
Article
CAS
PubMed
Google Scholar
Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta (BBA)-Biomembr. 2004;1660(1):171–99.
Article
CAS
Google Scholar
Niehaus W, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6(1):126–30.
Article
CAS
PubMed
Google Scholar
Tracey WR, Tse J, Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther. 1995;272(3):1011–5.
CAS
PubMed
Google Scholar
Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49(5):1304–13.
Article
CAS
PubMed
Google Scholar
Tiwari BK, Kumar D, Abidi A, Rizvi SI. Efficacy of composite extract from leaves and fruits of medicinal plants used in traditional diabetic therapy against oxidative stress in alloxan-induced diabetic rats. ISRN Pharmacol. 2014;2014:608590.
Article
PubMed
PubMed Central
Google Scholar
Chance B, Maehly A. Assay of catalase and peroxidases. Method s Enzymol, 2: 764-775. Anfidesma ghaesembilla Careya arborea Dillenia pentagyna Morinda finctoria. 1955.
Khan RA. Protective effects of Sonchus asper (L.) Hill,(Asteraceae) against CCl4-induced oxidative stress in the thyroid tissue of rats. BMC Complement Altern Med. 2012;12(1):181.
PubMed
PubMed Central
Google Scholar
Jollow D, Mitchell J, Zampaglione N, Gillette J. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol. 1974;11(3):151–69.
Article
CAS
Google Scholar
Fleg JL, Aronow WS, Frishman WH. Cardiovascular drug therapy in the elderly: benefits and challenges. Nat Rev Cardiol. 2011;8(1):13–28.
Article
CAS
PubMed
Google Scholar
Ochoa JJ, Quiles JL, Huertas JR, Mataix J. Coenzyme Q10 protects from aging-related oxidative stress and improves mitochondrial function in heart of rats fed a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol A Biol Sci Med Sci. 2005;60(8):970–5.
Article
PubMed
Google Scholar
Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol. 2008;51(14):1384–92.
Article
PubMed
PubMed Central
Google Scholar
Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007;37(1):31–7.
Article
CAS
PubMed
Google Scholar
Lee C-K, Pugh TD, Klopp RG, Edwards J, Allison DB, Weindruch R, et al. The impact of α-lipoic acid, coenzyme Q 10 and caloric restriction on life span and gene expression patterns in mice. Free Radic Biol Med. 2004;36(8):1043–57.
Article
CAS
PubMed
Google Scholar
Dallner G, Sindelar PJ. Regulation of ubiquinone metabolism. Free Radic Biol Med. 2000;29(3):285–94.
Article
CAS
PubMed
Google Scholar
Linnane AW, Zhang C, Yarovaya N, Kopsidas G, Kovalenko S, Papakostopoulos P, et al. Human aging and global function of coenzyme Q10. Ann N Y Acad Sci. 2002;959(1):396–411.
Article
CAS
PubMed
Google Scholar
Díaz-Castro J, Guisado R, Kajarabille N, García C, Guisado IM, de Teresa C, et al. Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr. 2012;51(7):791–9.
Article
PubMed
Google Scholar
Adaramoye OA, Lawal SO. Kolaviron, a biflavonoid fraction from Garcinia kola, protects against isoproterenol-induced injury by mitigating cardiac dysfunction and oxidative stress in rats. J Basic Clin Physiol Pharmacol. 2015;26(1):65–72.
Article
CAS
PubMed
Google Scholar
Ahmadvand H, Ghasemi-Dehnoo M. Antiatherogenic, hepatoprotective, and hypolipidemic effects of coenzyme Q10 in alloxan-induced type 1 diabetic rats. ARYA atherosclerosis. 2014;10(4):192.
PubMed
PubMed Central
Google Scholar
Maynard S, Menown I, Adgey A. Troponin T or troponin I as cardiac markers in ischaemic heart disease. Heart. 2000;83(4):371–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priscilla DH, Prince PSM. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Biol Interact. 2009;179(2):118–24.
Article
CAS
PubMed
Google Scholar
Ghule AE, Kulkarni CP, Bodhankar SL, Pandit VA. Effect of pretreatment with coenzyme Q 10 on isoproterenol-induced cardiotoxicity and cardiac hypertrophy in rats. Curr Ther Res. 2009;70(6):460–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liaudet L, Calderari B, Pacher P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail Rev. 2014;19(6):815–24.
Article
CAS
PubMed
Google Scholar
Rodrigo R, Libuy M, Feliú F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers. 2013;35(6):773–90.
Article
PubMed
PubMed Central
Google Scholar
Mladenka P, Zatloukalova L, Filipsky T, Vavrova J, Holeckova M, Palicka V, et al. Common biomarkers of oxidative stress do not reflect cardiovascular dys/function in rats. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013;157(2):146–52.
CAS
PubMed
Google Scholar
Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun. 2004;318(3):756–63.
Article
CAS
PubMed
Google Scholar
Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxidative Med Cell Longev. 2009;2(5):259–69.
Article
Google Scholar
Li D, Qu Y, Tao L, Liu H, Hu A, Gao F, et al. Inhibition of iNOS protects the aging heart against β-adrenergic receptor stimulation-induced cardiac dysfunction and myocardial ischemic injury. J Surg Res. 2006;131(1):64–72.
Article
CAS
PubMed
Google Scholar
Huynh K, Kiriazis H, Du X-J, Love J, Jandeleit-Dahm K, Forbes J, et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia. 2012;55(5):1544–53.
Article
CAS
PubMed
Google Scholar
Hamid A, Aiyelaagbe O, Usman L, Ameen O, Lawal A. Antioxidants: Its medicinal and pharmacological applications. Afr J Pure Appl Chem. 2010;4(8):142–51.
CAS
Google Scholar
Karthikeyan K, Bai BS, Devaraj SN. Cardioprotective effect of grape seed proanthocyanidins on isoproterenol-induced myocardial injury in rats. Int J Cardiol. 2007;115(3):326–33.
Article
CAS
PubMed
Google Scholar
Van Vleet JF, Ferrans VJ, Herman E. 35 - Cardiovascular and Skeletal Muscle Systems A2 - Wallig, Wanda M. HaschekColin G. RousseauxMatthew A. Handbook of Toxicologic Pathology (Second Edition). San Diego: Academic Press; 2002. p. 363-455.
Boutet M, Huttner I, Rona G. Permeability alteration of sarcolemmal membrane in catecholamine-induced cardiac muscle cell injury. In vivo studies with fine structural diffusion tracer horse radish peroxidase. Lab Invest. 1976;34(5):482–8.
CAS
PubMed
Google Scholar
Todd GL, Cullan GE, Cullan GM. Isoproterenol-induced myocardial necrosis and membrane permeability alterations in the isolated perfused rabbit heart. Exp Mol Pathol. 1980;33(1):43–54.
Article
CAS
PubMed
Google Scholar
Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985;17(4):291–306.
Article
CAS
PubMed
Google Scholar
Sun Y, Carretero OA, Xu J, Rhaleb N-E, Wang F, Lin C, et al. Lack of inducible NO synthase reduces oxidative stress and enhances cardiac response to isoproterenol in mice with deoxycorticosterone acetate–salt hypertension. Hypertension. 2005;46(6):1355–61. doi:10.1161/01.HYP.0000192651.06674.3f.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldspink DF, Burniston JG, Ellison GM, Clark WA, Tan LB. Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways? Exp Physiol. 2004;89(4):407–16. doi:10.1113/expphysiol.2004.027482.
Article
CAS
PubMed
Google Scholar
Debl K, Djavidani B, Buchner S, Poschenrieder F, Heinicke N, Feuerbach S, et al. Time course of eosinophilic myocarditis visualized by CMR. J Cardiovasc Magn Reson. 2008;10(1):1–2. doi:10.1186/1532-429x-10-21.
Article
Google Scholar
Zhang J, Knapton A, Lipshultz SE, Weaver JL, Herman EH. Isoproterenol-induced cardiotoxicity in sprague-dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol Pathol. 2008;36(2):277–8. doi:10.1177/0192623307313010.
Article
PubMed
Google Scholar
Lobo Filho HG, Ferreira NL, Sousa RB, Carvalho ER, Lobo PLD, Lobo Filho JG. Experimental model of myocardial infarction induced by isoproterenol in rats. Braz J Cardiovasc Surg. 2011;26:469–76.
Article
Google Scholar
Liu Q, Zhang Q, Wang K, Wang S, Lu D, Li Z, et al. Renal denervation findings on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sci Rep. 2015;5:18582. doi:10.1038/srep18582.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maheshwari R, Balaraman R, Sen AK, Shukla D, Seth A. Effect of concomitant administration of coenzyme Q10 with sitagliptin on experimentally induced diabetic nephropathy in rats. Renal Failure. 2016:1-10. doi:10.1080/0886022X.2016.1254659.
El-Sheikh AAK, Morsy MA, Mahmoud MM, Rifaai RA, Abdelrahman AM. Effect of coenzyme-Q10 on doxorubicin-induced nephrotoxicity in rats. Adv Pharmacol Sci. 2012;2012:8. doi:10.1155/2012/981461.
Google Scholar