Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant. 2004;4(3):378–83.
PubMed
Google Scholar
Klintmalm GB, Iwatsuki S, Starzl TE. Nephrotoxicity of cyclosporin a in liver and kidney transplant patients. Lancet. 1981;1(8218):470–1.
CAS
PubMed
PubMed Central
Google Scholar
Morris PJ, French ME, Dunnill MS, Hunnisett AG, Ting A, Thompson JF, et al. A controlled trial of cyclosporine in renal transplantation with conversion to azathioprine and prednisolone after three months. Transplantation. 1983;36(3):273–7.
CAS
PubMed
Google Scholar
Bennett WM, Pulliam JP. Cyclosporine nephrotoxicity. Ann Intern Med. 1983;99(6):851–4.
CAS
PubMed
Google Scholar
Myers BD, Ross J, Newton L, Luetscher J, Perlroth M. Cyclosporine-associated chronic nephropathy. N Engl J Med. 1984;311(11):699–705.
CAS
PubMed
Google Scholar
Randhawa PS, Shapiro R, Jordan ML, Starzl TE, Demetris AJ. The histopathological changes associated with allograft rejection and drug toxicity in renal transplant recipients maintained on FK506. Clinical significance and comparison with cyclosporine. Am J Surg Pathol. 1993;17(1):60–8.
CAS
PubMed
PubMed Central
Google Scholar
Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481–508.
CAS
PubMed
Google Scholar
Granelli-Piperno A, Nolan P, Inaba K, Steinman RM. The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter. J Exp Med. 1990;172(6):1869–72.
CAS
PubMed
Google Scholar
Nishiyama S, Manabe N, Kubota Y, Ohnishi H, Kitanaka A, Tokuda M, et al. Cyclosporin a inhibits the early phase of NF-kappaB/RelA activation induced by CD28 costimulatory signaling to reduce the IL-2 expression in human peripheral T cells. Int Immunopharmacol. 2005;5(4):699–710.
CAS
PubMed
Google Scholar
Tamada S, Nakatani T, Asai T, Tashiro K, Komiya T, Sumi T, et al. Inhibition of nuclear factor-kappaB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney Int. 2003;63(1):306–14.
CAS
PubMed
Google Scholar
Asai T, Nakatani T, Tamada S, Kuwabara N, Yamanaka S, Tashiro K, et al. Activation of transcription factors AP-1 and NF-kappaB in chronic cyclosporine a nephrotoxicity: role in beneficial effects of magnesium supplementation. Transplantation. 2003;75(7):1040–4.
CAS
PubMed
Google Scholar
Tamada S, Asai T, Kuwabara N, Iwai T, Uchida J, Teramoto K, et al. Molecular mechanisms and therapeutic strategies of chronic renal injury: the role of nuclear factor kappaB activation in the development of renal fibrosis. J Pharmacol Sci. 2006;100(1):17–21.
CAS
PubMed
Google Scholar
Gonzalez-Guerrero C, Ocana-Salceda C, Berzal S, Carrasco S, Fernandez-Fernandez B, Cannata-Ortiz P, et al. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-kappaB-mediated inflammatory responses in kidney tubular cells. Toxicol Appl Pharmacol. 2013;272(3):825–41.
CAS
PubMed
Google Scholar
Miyajima A, Kosaka T, Seta K, Asano T, Umezawa K, Hayakawa M. Novel nuclear factor kappa B activation inhibitor prevents inflammatory injury in unilateral ureteral obstruction. J Urol. 2003;169(4):1559–63.
CAS
PubMed
Google Scholar
Shinoda K, Nakagawa K, Kosaka T, Tanaka N, Maeda T, Kono H, et al. Regulation of human dendritic cells by a novel specific nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin. Hum Immunol. 2010;71(8):763–70.
CAS
PubMed
Google Scholar
Kono H, Nakagawa K, Morita S, Shinoda K, Mizuno R, Kikuchi E, et al. Effect of a novel nuclear factor-kappaB activation inhibitor on renal ischemia-reperfusion injury. Transplantation. 2013;96(10):863–70.
CAS
PubMed
Google Scholar
Umezawa K, Chaicharoenpong C. Molecular design and biological activities of NF-kappaB inhibitors. Mol Cells. 2002;14(2):163–7.
CAS
PubMed
Google Scholar
Yamamoto M, Horie R, Takeiri M, Kozawa I, Umezawa K. Inactivation of NF-kappaB components by covalent binding of (−)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem. 2008;51(18):5780–8.
CAS
PubMed
Google Scholar
Takeiri M, Horie K, Takahashi D, Watanabe M, Horie R, Simizu S, et al. Involvement of DNA binding domain in the cellular stability and importin affinity of NF-kappaB component RelB. Org Biomol Chem. 2012;10(15):3053–9.
CAS
PubMed
Google Scholar
Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K. Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem. 2002;277(27):24625–30.
CAS
PubMed
Google Scholar
Horie K, Ma J, Umezawa K. Inhibition of canonical NF-kappaB nuclear localization by (−)-DHMEQ via impairment of DNA binding. Oncol Res. 2015;22(2):105–15.
PubMed
Google Scholar
Suzuki E, Umezawa K. Inhibition of macrophage activation and phagocytosis by a novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin. Biomed Pharmacother. 2006;60(9):578–86.
CAS
PubMed
Google Scholar
Carlos CP, Mendes GE, Miquelin AR, Luz MA, da Silva CG, van Rooijen N, et al. Macrophage depletion attenuates chronic cyclosporine a nephrotoxicity. Transplantation. 2010;89(11):1362–70.
CAS
PubMed
Google Scholar
Rosen S, Greenfeld Z, Brezis M. Chronic cyclosporine-induced nephropathy in the rat. A medullary ray and inner stripe injury. Transplantation. 1990;49(4):445–52.
CAS
PubMed
Google Scholar
Yang CW, Ahn HJ, Kim WY, Shin MJ, Kim SK, Park JH, et al. Influence of the renin-angiotensin system on epidermal growth factor expression in normal and cyclosporine-treated rat kidney. Kidney Int. 2001;60(3):847–57.
CAS
PubMed
Google Scholar
Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S, et al. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26(3):800–13.
CAS
PubMed
Google Scholar
Cantarovich D, Karam G, Giral-Classe M, Hourmant M, Dantal J, Blancho G, et al. Randomized comparison of triple therapy and antithymocyte globulin induction treatment after simultaneous pancreas-kidney transplantation. Kidney Int. 1998;54(4):1351–6.
CAS
PubMed
Google Scholar
Suzuki K, Sugiyama C, Ohno O, Umezawa K. Preparation and biological activities of optically active dehydroxymethylepoxyquinomicin, a novel NF-κB inhibitor. Tetrahedron. 2004;60(33):7061–6.
CAS
Google Scholar
Yoshida T, Yamashita M, Horimai C, Hayashi M. Smooth muscle-selective inhibition of nuclear factor-kappaB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury. J Am Heart Assoc. 2013;2(3):e000230.
PubMed
PubMed Central
Google Scholar
Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, et al. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010;21(8):1254–62.
CAS
PubMed
Google Scholar
Zhong Z, Arteel GE, Connor HD, Yin M, Frankenberg MV, Stachlewitz RF, et al. Cyclosporin a increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am J Phys. 1998;275(4):F595–604.
CAS
Google Scholar
Djamali A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J Physiol Renal Physiol. 2007;293(2):F445–55.
CAS
PubMed
Google Scholar
Longoni B, Boschi E, Demontis GC, Ratto GM, Mosca F. Apoptosis and adaptive responses to oxidative stress in human endothelial cells exposed to cyclosporin a correlate with BCL-2 expression levels. FASEB J. 2001;15(3):731–40.
CAS
PubMed
Google Scholar
Galletti P, Di Gennaro CI, Migliardi V, Indaco S, Della Ragione F, Manna C, et al. Diverse effects of natural antioxidants on cyclosporin cytotoxicity in rat renal tubular cells. Nephrol Dial Transplant. 2005;20(8):1551–8.
CAS
PubMed
Google Scholar
Wolf G, Killen PD, Neilson EG. Cyclosporin a stimulates transcription and procollagen secretion in tubulointerstitial fibroblasts and proximal tubular cells. J Am Soc Nephrol. 1990;1(6):918–22.
CAS
PubMed
Google Scholar
Johnson DW, Saunders HJ, Johnson FJ, Huq SO, Field MJ, Pollock CA. Cyclosporin exerts a direct fibrogenic effect on human tubulointerstitial cells: roles of insulin-like growth factor I, transforming growth factor beta1, and platelet-derived growth factor. J Pharmacol Exp Ther. 1999;289(1):535–42.
CAS
PubMed
Google Scholar
Thomas SE, Andoh TF, Pichler RH, Shankland SJ, Couser WG, Bennett WM, et al. Accelerated apoptosis characterizes cyclosporine-associated interstitial fibrosis. Kidney Int. 1998;53(4):897–908.
CAS
PubMed
Google Scholar
Shihab FS, Andoh TF, Tanner AM, Yi H, Bennett WM. Expression of apoptosis regulatory genes in chronic cyclosporine nephrotoxicity favors apoptosis. Kidney Int. 1999;56(6):2147–59.
CAS
PubMed
Google Scholar
Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP. Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis. 2008;13(1):11–32.
CAS
PubMed
Google Scholar
Yamashita M, Yoshida T, Suzuki S, Homma K, Hayashi M. Podocyte-specific NF-kappaB inhibition ameliorates proteinuria in adriamycin-induced nephropathy in mice. Clin Exp Nephrol. 2017;21(1):16–26.
CAS
PubMed
Google Scholar
Calne RY, Rolles K, White DJ, Thiru S, Evans DB, McMaster P, et al. Cyclosporin a initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2(8151):1033–6.
CAS
PubMed
Google Scholar
Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nat Med. 2008;14(9):931–8.
CAS
PubMed
PubMed Central
Google Scholar
Young BA, Burdmann EA, Johnson RJ, Alpers CE, Giachelli CM, Eng E, et al. Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity. Kidney Int. 1995;48(2):439–48.
CAS
PubMed
Google Scholar
Yoshimura T, Takeya M, Takahashi K. Molecular cloning of rat monocyte chemoattractant protein-1 (MCP-1) and its expression in rat spleen cells and tumor cell lines. Biochem Biophys Res Commun. 1991;174(2):504–9.
CAS
PubMed
Google Scholar
Gonzalez-Guerrero C, Cannata-Ortiz P, Guerri C, Egido J, Ortiz A, Ramos AM. TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity. Arch Toxicol. 2017;91(4):1925–39.
CAS
PubMed
Google Scholar
Jin M, Lv P, Chen G, Wang P, Zuo Z, Ren L, et al. Klotho ameliorates cyclosporine A-induced nephropathy via PDLIM2/NF-kB p65 signaling pathway. Biochem Biophys Res Commun. 2017;486(2):451–7.
CAS
PubMed
Google Scholar
Nakahama H. Stimulatory effect of cyclosporine a on endothelin secretion by a cultured renal epithelial cell line, LLC-PK1 cells. Eur J Pharmacol. 1990;180(1):191–2.
CAS
PubMed
Google Scholar
Kurtz A, Della Bruna R, Kuhn K. Cyclosporine a enhances renin secretion and production in isolated juxtaglomerular cells. Kidney Int. 1988;33(5):947–53.
CAS
PubMed
Google Scholar
Bobadilla NA, Gamba G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am J Physiol Renal Physiol. 2007;293(1):F2–9.
CAS
PubMed
Google Scholar
Roullet JB, Xue H, McCarron DA, Holcomb S, Bennett WM. Vascular mechanisms of cyclosporin-induced hypertension in the rat. J Clin Invest. 1994;93(5):2244–50.
CAS
PubMed
PubMed Central
Google Scholar
Park HS, Kim EN, Kim MY, Lim JH, Kim HW, Park CW, et al. The protective effect of neutralizing high-mobility group box 1 against chronic cyclosporine nephrotoxicity in mice. Transpl Immunol. 2016;34:42–9.
CAS
PubMed
Google Scholar
Neria F, Castilla MA, Sanchez RF, Gonzalez Pacheco FR, Deudero JJ, Calabia O, et al. Inhibition of JAK2 protects renal endothelial and epithelial cells from oxidative stress and cyclosporin a toxicity. Kidney Int. 2009;75(2):227–34.
CAS
PubMed
Google Scholar