Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017;11(4):317–70. https://doi.org/10.1007/s12072-017-9799-9.
Article
PubMed
Google Scholar
Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol. 2016;3(1):57–9. https://doi.org/10.2217/hep.15.41.
Article
PubMed
Google Scholar
Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6. https://doi.org/10.1097/FPC.0b013e32833ffb56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamza AA, Ahmed MM, Elwey HM, Amin A. Melissa officinalis protects against doxorubicin-induced cardiotoxicity in rats and potentiates its anticancer activity on MCF-7 cells. PLoS One. 2016;11(11):e0167049. https://doi.org/10.1371/journal.pone.0167049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amin A, Mahmoud-Ghoneim D, Syam MI, Daoud S. Neural network assessment of herbal protection against chemotherapeutic-induced reproductive toxicity. Theor Biol Med Model. 2012;9(1):1. https://doi.org/10.1186/1742-4682-9-1.
Article
PubMed
PubMed Central
Google Scholar
Korga A, Ostrowska M, Jozefczyk A, Iwan M, Wojcik R, Zgorka G, et al. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol Toxicol. 2019;20(1):22. https://doi.org/10.1186/s40360-019-0301-2.
Article
PubMed
PubMed Central
Google Scholar
Xiao Z, Wang C, Li L, Tang X, Li N, Li J, et al. Clinical efficacy and safety of Aidi injection plus docetaxel-based chemotherapy in advanced nonsmall cell lung Cancer: a Meta-analysis of 36 randomized controlled trials. Evid Based Complement Alternat Med. 2018;2018:7918258.
PubMed
PubMed Central
Google Scholar
Xie G, Cui Z, Peng K, Zhou X, Xia Q, Xu D. Aidi injection, a traditional Chinese medicine injection, Could Be Used as an Adjuvant Drug to Improve Quality of Life of Cancer Patients Receiving Chemotherapy: A Propensity Score Matching Analysis Integr Cancer Ther. 2019;18:1534735418810799.
Xiao Z, Wang C, Zhou M, Hu S, Jiang Y, Huang X, et al. Clinical efficacy and safety of Aidi injection plus paclitaxel-based chemotherapy for advanced non-small cell lung cancer: a meta-analysis of 31 randomized controlled trials following the PRISMA guidelines. J Ethnopharmacol. 2019;228:110–22. https://doi.org/10.1016/j.jep.2018.09.024.
Article
CAS
PubMed
Google Scholar
Liu D, Chen Z. The effects of cantharidin and cantharidin derivates on tumour cells. Anti Cancer Agents Med Chem. 2009;9(4):392–6. https://doi.org/10.2174/1871520610909040392.
Article
CAS
Google Scholar
Han W, Wang S, Liang R, Wang L, Chen M, Li H, et al. Non-ionic surfactant vesicles simultaneously enhance antitumor activity and reduce the toxicity of cantharidin. Int J Nanomedicine. 2013;8:2187–96. https://doi.org/10.2147/IJN.S43568.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JA, Kim Y, Kwon BM, Han DC. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. J Biol Chem. 2013;288(40):28713–26. https://doi.org/10.1074/jbc.M113.488346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Ma YZ, Song L, Wang CH, Qi TG, Shao GR. Effect of cantharidins in chemotherapy for hepatoma: a retrospective cohort study. Am J Chin Med. 2014;42(3):561–7. https://doi.org/10.1142/S0192415X14500360.
Article
CAS
PubMed
Google Scholar
Zhang YM, Liu YQ, Liu D, Zhang L, Qin J, Zhang Z, et al. The effects of Astragalus polysaccharide on bone marrow-derived mesenchymal stem cell proliferation and morphology induced by A549 lung Cancer cells. Med Sci Monit. 2019;25:4110–21. https://doi.org/10.12659/MSM.914219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A review of the pharmacological action of Astragalus polysaccharide. Front Pharmacol. 2020;11:349. https://doi.org/10.3389/fphar.2020.00349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondeva-Burdina M, Shkondrov A, Simeonova R, Vitcheva V, Krasteva I, Ionkova I. In vitro/in vivo antioxidant and hepatoprotective potential of defatted extract and flavonoids isolated from Astragalus spruneri Boiss. (Fabaceae). Food Chem. Toxicol. 2018;111:631–40.
Li LK, Kuang WJ, Huang YF, Xie HH, Chen G, Zhou QC, et al. Anti-tumor effects of Astragalus on hepatocellular carcinoma in vivo. Indian J Pharmacol. 2012;44(1):78–81. https://doi.org/10.4103/0253-7613.91872.
Article
PubMed
PubMed Central
Google Scholar
Yoon TJ, Yoo YC, Lee SW, Shin KS, Choi WH, Hwang SH, et al. Anti-metastatic activity of Acanthopanax senticosus extract and its possible immunological mechanism of action. J Ethnopharmacol. 2004;93(2–3):247–53. https://doi.org/10.1016/j.jep.2004.03.052.
Article
PubMed
Google Scholar
Yang X, Zou J, Cai H, Huang X, Yang X, Guo D, et al. Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling. Biomed Pharmacother. 2017;96:1240–5. https://doi.org/10.1016/j.biopha.2017.11.092.
Article
CAS
PubMed
Google Scholar
Dai G, Sun B, Gong T, Pan Z, Meng Q, Ju W. Ginsenoside Rb2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β/Smad signaling. Phytomedicine. 2019;56:126–35. https://doi.org/10.1016/j.phymed.2018.10.025.
Article
CAS
PubMed
Google Scholar
Xiao Z, Jiang Y, Chen XF, Wang CQ, Xu WH, Liu Y, et. al. The Hepatorenal Toxicity and Tumor Response of Chemotherapy With or Without Aidi Injection in Advanced Lung Cancer: A Meta-Analysis of 80 Randomized Controlled Trials. Clin Ther. 2020;42(3):515–43.e31.
Xiao Z, Liang R, Wang CQ, Xu S, Li N, He Y, et al. Can Aidi injection alleviate the toxicity and improve the clinical efficacy of radiotherapy in lung cancer?: a meta-analysis of 16 randomized controlled trials following the PRISMA guidelines. Medicine (Baltimore). 2016;95(35):e4517. https://doi.org/10.1097/MD.0000000000004517.
Article
CAS
Google Scholar
Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol. 2014;87(1):93–120. https://doi.org/10.1016/j.bcp.2013.09.007.
Article
CAS
PubMed
Google Scholar
Lu Y, Pan J, Yang ST, Wu Q, Liu CH, Li YJ, et al. Effect of Aidi injection on glutathione-S-transferase of diethynitrosamine-induced hepatocellular carcinoma model rats. Chin Pharma Bull. 2018;34(8):1170–4.
Google Scholar
Pan J, Lu Y, Zhang S, Li YT, Sun J, Liu CH, et al. Differential changes in the pharmacokinetics of doxorubicin in diethylnitrosamine-induced hepatocarcinoma model rats. Xenobiotica. 2020;50(10):1251–7. https://doi.org/10.1080/00498254.2020.1765049.
Article
CAS
PubMed
Google Scholar
Lu Y, Pan J, Yang ST, Liu CH, Li YJ, Liu T. Effect of Aidi injection on in vivo pharmacokinetics of doxorubicin in Sprague-Dawley rats by UPLC-MS method. Chin. Pharma. Bull. 2018;34(3):423–7.
Google Scholar
Gomes AS, Monteleone PA, Sayre JW, Finn RS, Sadeghi S, Tong MJ, et al. Comparison of triple-drug transcatheter arterial chemoembolization (TACE) with single-drug TACE using doxorubicin-eluting beads: long-term survival in 313 patients. AJR Am J Roentgenol. 2017;209(4):722–32. https://doi.org/10.2214/AJR.17.18219.
Article
PubMed
Google Scholar
Sun JH, Zhou GH, Zhang YL, Nie CH, Zhou TY, Ai J, et al. Chemoembolization of liver cancer with drug-loading microsphere 50–100 μm. Oncotarget. 2017;8(3):5392–9. https://doi.org/10.18632/oncotarget.14281.
Article
PubMed
Google Scholar
Cao W, Li J, Hu C, Shen J, Liu X, Xu Y, et al. Symptom clusters and symptom interference of HCC patients undergoing TACE: a cross-sectional study in China. Support Care Cancer. 2013;21(2):475–83. https://doi.org/10.1007/s00520-012-1541-5.
Article
PubMed
Google Scholar
Wan YM, Li YH, Xu ZY, Wu HM, Xu Y, Yang M, et al. The effect of Transarterial chemoembolization in combination with Kang'ai injection on patients with intermediate stage hepatocellular carcinoma: a prospective study. Integr Cancer Ther. 2018;17(2):477–85. https://doi.org/10.1177/1534735417734913.
Article
PubMed
Google Scholar
Hu B, Wang SS, Du Q. Traditional Chinese medicine for prevention and treatment of hepatocarcinoma: from bench to bedside. World J Hepatol. 2015;7(9):1209–32. https://doi.org/10.4254/wjh.v7.i9.1209.
Article
PubMed
PubMed Central
Google Scholar
Dai Y, Gao S, Liu X, Gao Q, Zhang L, Fan X, et al. Effect of Aidi injection plus TACE on hepatocellular carcinoma: a meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2018;9196409.
Sun XF, Pei YT, Yin QW, Wu MS, Yang GT. Application of Aidi injection (艾迪注射液) in the bronchial artery infused neo-adjuvant chemotherapy for stage III a non-small cell lung cancer before surgical operation. Chin J Integr Med. 2010;16(6):537–41. https://doi.org/10.1007/s11655-010-0569-y.
Article
CAS
PubMed
Google Scholar
Wu L, Tang ZY, Li Y. Experimental models of hepatocellular carcinoma: developments and evolution. J Cancer Res Clin Oncol. 2009;135(8):969–81. https://doi.org/10.1007/s00432-009-0591-7.
Article
PubMed
Google Scholar
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: a review. Tumour Biol. 2017;39(3):1010428317695923. https://doi.org/10.1177/1010428317695923.
Article
PubMed
Google Scholar
Lal S, Mahajan A, Chen WN, Chowbay B. Pharmacogenetics of target genes across doxorubicin disposition pathway: a review. Curr Drug Metab. 2010;11(1):115–28. https://doi.org/10.2174/138920010791110890.
Article
CAS
PubMed
Google Scholar
Bains OS, Karkling MJ, Grigliatti TA, Reid RE, Riggs KW. Two nonsynonymous single nucleotide polymorphisms of human carbonyl reductase 1 demonstrate reduced in vitro metabolism of daunorubicin and doxorubicin. Drug Metab Dispos. 2009;37(5):1107–14. https://doi.org/10.1124/dmd.108.024711.
Article
CAS
PubMed
Google Scholar
Chen T, Wang C, Liu Q, Meng Q, Sun H, Huo X, et al. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway. Cancer Biol Ther. 2015;16(1):106–14. https://doi.org/10.4161/15384047.2014.987062.
Article
CAS
PubMed
Google Scholar
Zhao YY, Yu L, Liu BL, He XJ, Zhang BY. Downregulation of P-gp, Ras and p-ERK1/2 contributes to the arsenic trioxide-induced reduction in drug resistance towards doxorubicin in gastric cancer cell lines. Mol Med Rep. 2015;12(5):7335–43. https://doi.org/10.3892/mmr.2015.4367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep. 2018;8(1):967. https://doi.org/10.1038/s41598-018-19325-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lal S, Wong ZW, Jada SR, Xiang X, Chen Shu X, Ang PC, et al. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics. 2007;8(6):567–75. https://doi.org/10.2217/14622416.8.6.567.
Article
CAS
PubMed
Google Scholar
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, et al. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther. 2018;12:3535–47. https://doi.org/10.2147/DDDT.S169833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pljesa-Ercegovac M, Savic-Radojevic A, Matic M, Coric V, Djukic T, Radic T, et al. Glutathione transferases: potential targets to overcome chemoresistance in solid tumors. Int J Mol Sci. 2018;19(12):3785. https://doi.org/10.3390/ijms19123785.
Article
CAS
PubMed Central
Google Scholar
Zhu C, Wang Y, Liu H, Mu H, Lu Y, Zhang J, et al. Oral administration of Ginsenoside Rg1 prevents cardiac toxicity induced by doxorubicin in mice through anti-apoptosis. Oncotarget. 2017;8(48):83792–801. https://doi.org/10.18632/oncotarget.19698.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Chen L, Wang T, Jiang X, Zhang H, Li P, et al. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine. 2015;22(10):875–84. https://doi.org/10.1016/j.phymed.2015.06.010.
Article
CAS
PubMed
Google Scholar
Zhou B, Yan Z, Liu R, Shi P, Qian S, Qu X, et al. Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology. 2016;280(2):630–9. https://doi.org/10.1148/radiol.2016150719.
Article
PubMed
Google Scholar
Li L, Ni J, Li M, Chen J, Han L, Zhu Y, et al. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy. Drug Delivery. 2017;24(1):1617–30. https://doi.org/10.1080/10717544.2017.1391893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Ruan Y, Shen T, Huang X, Li M, Yu W, et al. Astragalus polysaccharide suppresses doxorubicin-induced cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways. Oxidative Med Cell Longev. 2014;2014:674219.
Article
Google Scholar
Cao Y, Shen T, Huang X, Lin Y, Chen B, Pang J, et al. Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(3):4837–48. https://doi.org/10.18632/oncotarget.13596.
Article
PubMed
Google Scholar
Liang Q, Yu X, Qu S, Xu H, Sui D. Acanthopanax senticosides B ameliorates oxidative damage induced by hydrogen peroxide in cultured neonatal rat cardiomyocytes. Eur J Pharmacol. 2010;627(1):209–15. https://doi.org/10.1016/j.ejphar.2009.10.055.
Article
CAS
PubMed
Google Scholar