Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M. Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol. 2003;14:250–3.
Article
Google Scholar
Debnam ES, Unwin RJ. Hyperglycemia and intestinal and renal glucose transport: implications for diabetic renal injury. Kidney Int. 1996;50:1101–9.
Article
CAS
Google Scholar
Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury: mechanisms in diabetes mellitus and therapeutic approaches. Ann N Y Acad Sci. 2005;1066:136–15.
Article
CAS
Google Scholar
Fernandes SM, Cordeiro PM, Watanabe M, Fonseca CD, Vattimo MF. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Arch Endocrinol Metab. 2016;60:443–9.
Article
Google Scholar
Mariee AD, Abd-Allah GM, El-Yamany MF. Renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats: the possible modulatory effects of garlic (Allium sativum L.). Biotechnol Appl Biochem. 2009;52:227–32.
Article
CAS
Google Scholar
Defronzo RA. Bromocriptine. A sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes [published correction appears in Diabetes Care. 2011; 34:1442. Dosage error in article text]. Diabetes Care. 2011;34:789–94.
Article
CAS
Google Scholar
Shivaprasad C, Kalra S. Bromocriptine in type 2 diabetes mellitus. Indian J Endocrinol Metab. 2011;15:17–24.
Article
Google Scholar
Narkar V, Kunduzova O, Hussain T, Cambon C, Parini A, Lokhandwala M. Dopamine D2-like receptor agonist bromocriptine protects against ischemia/reperfusion injury in rat kidney. Kidney Int. 2004;66:633–40.
Article
CAS
Google Scholar
Mejía-Rodríguez O, Herrera-Abarca JE, Ceballos-Reyes G, Avila-Diaz M, Prado-Uribe C, Belio-Caro F, Salinas-González A, Vega-Gomez H, Alvarez-Aguilar C, Lindholm B, García-López E, Paniagua R. Cardiovascular and renal effects of bromocriptine in diabetic patients with stage 4 chronic kidney disease. BioMed Res Int. 2013;2013:104059.
Lahlou S, Duarte GP. Hypotensive action of bromocriptine in the DOCA-salt hypertensive rat: contribution of spinal dopamine receptors. Fundam Clin Pharmacol. 1998;12:599–606.
Article
CAS
Google Scholar
Luchsinger A, Grilli M, Velasco M. Metoclopramide, and domperidone block the antihypertensive effect of bromocriptine in hypertensive patients. Am J Ther. 1998;5:81–8.
Article
CAS
Google Scholar
Mokhles M. Dopamine agonist and heart failure in patients with Parkinson’s disease: a nested case-control study on multiple health care databases. In: Proceedings of the European Society of Cardiology Congress, Stockholm, Sweden. 2010.
Bordet R. Central dopamine receptors: general considerations (Part 1). Rev Neurol (Paris). 2004;160:862–870. [Article in French].
Melmed S, Braunstein GD, Chang RJ, Becker DP. Pituitary tumors secreting growth hormone and prolactin. Ann Intern Med. 1986;105:238–53.
Article
CAS
Google Scholar
Louis CS, Tan KKC. Ng W-L, Au RKK, Lee Y-H, Chan, Nigel CK. Tan.Bromocriptine use and the risk of valvular heart disease. J Mov Disord. 2009;24:344–9.
Article
Google Scholar
Wakil A, Rigby AS, Clark AL, Kallvikbacka-Bennett A, Atkin SL. Low dose cabergoline for hyperprolactinaemia is not associated with clinically significant valvular heart disease. Eur J Endocrinol. 2008;159:R11–4.
Article
CAS
Google Scholar
Kekewska A, Hübner H, Gmeiner P, Pertz HH. The bulky N6 substituent of cabergoline is responsible for agonism of this drug at 5-hydroxytryptamine 5-HT2A and 5-HT2B receptors and thus is a determinant of valvular heart disease. J Pharmacol Exp Ther. 2011;338:381–91.
Article
CAS
Google Scholar
Oana F, Onozuka H, Tsuchioka A, et al. Function and expression differences between ergot and non-ergot dopamine D2 agonists on heart valve interstitial cells. J Heart Valve Dis. 2014;23:246–52.
PubMed
Google Scholar
Brasil D, Temsah RM, Kumar K, Kumamoto H, Takeda N, Dhalla NS. Blockade of 5-HT(2A) receptors by sarpogrelate protects the heart against myocardial infarction in rats. J Cardiovasc Pharmacol Ther. 2002;7:53–9.
Article
CAS
Google Scholar
Satomura K, Takase B, Hamabe A, Ashida K, Hosaka H, Ohsuzu F, Kurita A. Sarpogrelate, a specific 5HT2-receptor antagonist, improves the coronary microcirculation in coronary artery disease. Clin Cardiol. 2002;25:28–32.
Article
Google Scholar
Saini HK, Takeda N, Goyal RK, Kumamoto H, Arneja AS, Dhalla NS. Therapeutic potentials of sarpogrelate in cardiovascular disease. Cardiovasc Drug Rev. 2004;22:27–54.
Article
CAS
Google Scholar
Kanter M, Coskun O, Korkmaz A, Oter S. Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. Anat Rec A Discov Mol Cell Evol Biol. 2004;279:685–91.
Article
Google Scholar
Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43:244–58.
Article
CAS
Google Scholar
Ribeiro-de-Oliveira A Jr, Guerra RM, Fóscolo RB, Marubayashi U, Reis AM, Coimbra CC. Effects of chronic bromocriptine (CB-154) treatment on the plasma glucose and insulin secretion response to neurocytoglucopenia in rats. J Endocrinol. 1999;162:237–42.
Article
CAS
Google Scholar
Ibrahim N, Zidan RA, Karam R. Does green tea have an ameliorative effect against cabergoline-induced cardiotoxicity in adult male albino rats? A histological and biochemical study. Egy J Hist. 2012;35:13–22.
Google Scholar
Kim DH, Choi BH, Ku SK, Park JH, Oh E, Kwak MK. Beneficial effects of sarpogrelate and rosuvastatin in high fat diet/streptozotocin-induced nephropathy in mice. PLoS One. 2016;11(4):e0153965. Published 2016 Apr 20.
Article
Google Scholar
Mukherjee KI. Medical laboratory technology. Tata McGraw Hill. 1988;3:991–3.
Google Scholar
Johns C, Gavras I, Handy DE, Salomao A, Gavras H. Models of experimental hypertension in mice. Hypertension. 1996;28:1064–9.
Article
CAS
Google Scholar
Kind PR, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol. 1954;7:322–6.
Article
CAS
Google Scholar
Lopez J, Carl A, Burtis ER, Ashwood, Bruns DE, editors. Tietz Textbook of Clinical Chemistry and Molecular Diagnosis (5th edition): Elsevier, St. Louis, USA, 2012, 2238 pp. 909 illustrations. ISBN: 978-1-4160-6164-9. Indian J Clin Biochem. 2013;28:104–105.
Kaplan A. Urea nitrogen and urinary ammonia. In: Meites S, editor. Standard method of clinical chemistry. New York: Academic Press Inc.; 1965. p. 245–56.
Google Scholar
Nielands JB. In Methods in Enzymology. Ed. by Colowick, S. P. & Kaplan, N. 0. New York: Academic Press Inc.; 1955. p. 449.
Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W. Early phase acute myocardial infarct size quantification: validation of the triphenyltetrazolium chloride tissue enzyme staining technique. Am Heart J. 1981;101:593.
Article
CAS
Google Scholar
Nachlas MM, Schnitka TK. Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol. 1963;42:379–406.
CAS
PubMed
PubMed Central
Google Scholar
Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA, Gilchrist A, Hoyer D, Insel PA, Izzo AA, Lawrence AJ, MacEwan DJ, Moon LD, Wonnacott S, Weston AH, McGrath JC. Experimental design and analysis and their reporting: new guidance for publication in BJP [published correction appears in Br J Pharmacol. 2015 Sep; 172(18):4600]. Br J Pharmacol. 2015;172:3461–3471.
Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34:789–94.
Article
CAS
Google Scholar
Scranton R, Cincotta A. Bromocriptine–unique formulation of a dopamine agonist for the treatment of type 2 diabetes. Expert Opin Pharmaco. 2010;11:269–79.
Article
CAS
Google Scholar
Aminorroaya A, Janghorbani M, Ramezani M, Haghighi S, Amini M. Does bromocriptine improve glycemic control of obese type-2 diabetics? Horm Res. 2004;62:55–9.
CAS
PubMed
Google Scholar
Zeng C, Zhang M, Asico LD, Eisner GM, Jose PA. The dopaminergic system in hypertension. Clin Sci (Lond). 2007;112:583–97.
Article
CAS
Google Scholar
McCoy CE, Douglas FL, Goldberg LI. Selective antagonism of the hypotensive effects of dopamine agonists in spontaneously hypertensive rats. Hypertension. 1986;8:298–302.
Article
CAS
Google Scholar
Konkalmatt PR, Asico LD, Zhang Y, Yang Y, Drachenberg C, Zheng X, Han F, Jose PA, Armando I. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight. 2016;1:e85888.
Article
Google Scholar
Nichols CD. Serotonin 5-HT(2A) Receptor function as a contributing factor to both neuropsychiatric and cardiovascular diseases. Cardiovasc Psychiatry Neurol. 2009;2009:475108.
Fujita M, Minamino T, Sanada S, Asanuma H, Hirata A, Ogita H, Okada K, Tsukamoto O, Takashima S, Tomoike H, Node K, Hori M, Kitakaze M. Selective blockade of serotonin 5-HT2A receptor increases coronary blood flow via augmented cardiac nitric oxide release through 5-HT1B receptor in hypoperfused canine hearts. J Mol Cell Cardiol. 2004;37:1219–23.
CAS
PubMed
Google Scholar