Szkutnik-Fiedler D, Kus K, Ratajczak P, Antoniów M, Nowakowska E, Grześkowiak E. Coadministration of tramadol with aripiprazole and venlafaxine—the effect on spatial memory functions in male rats. Pharmacol Rep. 2016;68(2):451–6. https://doi.org/10.1016/j.pharep.2015.11.003.
Article
CAS
PubMed
Google Scholar
Shadnia S, Brent J, Mousavi-Fatemi K, Hafezi P, Soltaninejad K. Recurrent seizures in tramadol intoxication: implications for therapy based on 100 patients. Basic & clinical pharmacology & toxicology. 2012;111(2):133–6. https://doi.org/10.1111/j.1742-7843.2012.00874.x.
Article
CAS
Google Scholar
Baghishani F, Mohammadipour A, Hosseinzadeh H, Hosseini M, Ebrahimzadeh-bideskan A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis. 2018;33(3):1–10. https://doi.org/10.1007/s11011-018-0194-6.
Article
CAS
Google Scholar
Lagard C, Malissin I, Indja W, Risède P, Chevillard L, Mégarbane B. Is naloxone the best antidote to reverse tramadol-induced neuro-respiratory toxicity in overdose? An experimental investigation in the rat. Clin Toxicol. 2017;56(8):1–7. https://doi.org/10.1080/15563650.2017.1401080.
Article
CAS
Google Scholar
Lagard C, Chevillard L, Malissin I, Risède P, Callebert J, Labat L, et al. Mechanisms of tramadol-related neurotoxicity in the rat: does diazepam/tramadol combination play a worsening role in overdose? Toxicol Appl Pharmacol. 2016;310:108–19. https://doi.org/10.1016/j.taap.2016.09.013.
Article
CAS
PubMed
Google Scholar
Bameri B, Shaki F, Ahangar N, Ataee R, Samadi M, Mohammadi H. Evidence for the involvement of the dopaminergic system in seizure and oxidative damage induced by tramadol. Int J Toxicol. 2018;37(2):164–70. https://doi.org/10.1177/1091581817753607.
Article
CAS
PubMed
Google Scholar
Abdel-Zaher AO, Abdel-Rahman MS, ELwasei FM. Protective effect of Nigella sativa oil against tramadol-induced tolerance and dependence in mice: role of nitric oxide and oxidative stress. Neurotoxicology. 2011;32(6):725–33. https://doi.org/10.1016/j.neuro.2011.08.001.
Article
CAS
PubMed
Google Scholar
Mohamed TM, Ghaffar HMA, El Husseiny RM. Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes. Toxicol Ind Health. 2015;31(12):1325–33. https://doi.org/10.1177/0748233713491814.
Article
CAS
PubMed
Google Scholar
Mohamed HM, Mahmoud AM. Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed Pharmacother. 2019;110:239–47. https://doi.org/10.1016/j.biopha.2018.11.141.
Article
CAS
PubMed
Google Scholar
Ghoneim FM, Khalaf HA, Elsamanoudy AZ, Helaly AN. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study. Int J Clin Exp Pathol. 2014;7(11):7323–41.
PubMed
PubMed Central
Google Scholar
Eizadi-Mood N, Ozcan D, Sabzghabaee AM, Mirmoghtadaee P, Hedaiaty M. Does naloxone prevent seizure in tramadol intoxicated patients? Int J Prev Med. 2014;5(3):302–7.
PubMed
PubMed Central
Google Scholar
Moghbelinejad S, Alizadeh S, Mohammadi G, Khodabandehloo F, Rashvand Z, Najafipour R, et al. The effects of quercetin on the gene expression of the GABA a receptor α5 subunit gene in a mouse model of kainic acid-induced seizure. J Physiol Sci. 2017;67(2):339–43. https://doi.org/10.1007/s12576-016-0497-5.
Article
CAS
PubMed
Google Scholar
Nassiri-Asl M, Hajiali F, Taghiloo M, Abbasi E, Mohseni F, Yousefi F. Comparison between the effects of quercetin on seizure threshold in acute and chronic seizure models. Toxicol Ind Health. 2016;32(5):936–44. https://doi.org/10.1177/0748233713518603.
Article
CAS
PubMed
Google Scholar
Kumar M, Kasala ER, Bodduluru LN, Kumar V, Lahkar M. Molecular and biochemical evidence on the protective effects of quercetin in isoproterenol-induced acute myocardial injury in rats. J Biochem Mol Toxicol. 2017;31(1):1–8. https://doi.org/10.1002/jbt.21832.
Article
CAS
PubMed
Google Scholar
Roslan J, Giribabu N, Karim K, Salleh N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother. 2017;86:570–82. https://doi.org/10.1016/j.biopha.2016.12.044.
Article
CAS
PubMed
Google Scholar
Zakaria N, Khalil SR, Awad A, Khairy GM. Quercetin reverses altered energy metabolism in the heart of rats receiving Adriamycin chemotherapy. Cardiovasc Toxicol. 2018;18(2):109–19. https://doi.org/10.1007/s12012-017-9420-4.
Article
CAS
PubMed
Google Scholar
Vieira EK, Bona S, Di Naso FC, Porawski M, Tieppo J, Marroni NP. Quercetin treatment ameliorates systemic oxidative stress in cirrhotic rats. ISRN gastroenterology. 2011;2011:1–6. https://doi.org/10.5402/2011/604071.
Article
CAS
Google Scholar
Zhou J, Zhou S, Gao Y, Zeng S. Modulatory effects of quercetin on hypobaric hypoxic rats. Eur J Pharmacol. 2012;674(2–3):450–4. https://doi.org/10.1016/j.ejphar.2011.11.028.
Article
CAS
PubMed
Google Scholar
Abdalla FH, Schmatz R, Cardoso AM, Carvalho FB, Baldissarelli J, de Oliveira JS, et al. Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: possible involvement of the acetylcholinesterase and Na+, K+-ATPase activities. Physiol Behav. 2014;135:152–67. https://doi.org/10.1016/j.physbeh.2014.06.008.
Article
CAS
PubMed
Google Scholar
Nassiri-Asl M, Moghbelinejad S, Abbasi E, Yonesi F, Haghighi M-R, Lotfizadeh M, et al. Effects of quercetin on oxidative stress and memory retrieval in kindled rats. Epilepsy Behav. 2013;28(2):151–5. https://doi.org/10.1016/j.yebeh.2013.04.019.
Article
PubMed
Google Scholar
Nieoczym D, Socała K, Raszewski G, Wlaź P. Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;54:50–8. https://doi.org/10.1016/j.pnpbp.2014.05.007.
Article
CAS
Google Scholar
Joshi D, Naidu P, Singh A, Kulkarni S. Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsions. J Med Food. 2005;8(3):392–6. https://doi.org/10.1089/jmf.2005.8.392.
Article
CAS
PubMed
Google Scholar
Nitsinskaya L, Ekimova I, Guzhova I, Feizulaev B, Pastukhov YF. Effects of quercetin on the severity of chemically induced convulsions and 70-kDal heat shock protein content in brain structures in rats. Neurosci Behav Physiol. 2011;41(7):680–6. https://doi.org/10.1007/s11055-011-9472-z.
Article
CAS
Google Scholar
Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxidative Med Cell Longev. 2016;2016:1–10. https://doi.org/10.1155/2016/2986796.
Article
CAS
Google Scholar
Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. The Malaysian journal of medical sciences: MJMS. 2017;24(5):101–5. https://doi.org/10.21315/mjms2017.24.5.11.
Article
PubMed
PubMed Central
Google Scholar
Farrokhfall K, Khoshbaten A, Zahediasl S, Mehrani H, Karbalaei N. Improved islet function is associated with anti-inflammatory, antioxidant and hypoglycemic potential of cinnamaldehyde on metabolic syndrome induced by high tail fat in rats. J functional foods. 2014;10:397–406.
Article
CAS
Google Scholar
Farrokhfall K, Hashtroudi MS, Ghasemi A, Mehrani H. Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats. Iranian journal of basic medical sciences. 2015;18(2):115–21.
PubMed
PubMed Central
Google Scholar
Ataie Z, Mehrani H, Ghasemi A, Farrokhfall K. Cinnamaldehyde has beneficial effects against oxidative stress and nitric oxide metabolites in the brain of aged rats fed with long-term, high-fat diet. J Funct Foods. 2019;52:545–51. https://doi.org/10.1016/j.jff.2018.11.038.
Article
CAS
Google Scholar
Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271–8. https://doi.org/10.1016/0003-2697(78)90342-1.
Article
CAS
PubMed
Google Scholar
Abarikwu SO. Protective effect of quercetin on atrazine-induced oxidative stress in the liver, kidney, brain, and heart of adult Wistar rats. Toxicol Int. 2014;21(2):148–55. https://doi.org/10.4103/0971-6580.139794.
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Saura MF, Galisteo M, Villar IC, Bermejo A, Zarzuelo A, Vargas F, et al. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem. 2005;270(1–2):147–55. https://doi.org/10.1007/s11010-005-4503-0.
Article
CAS
PubMed
Google Scholar
Ruiz MJ, Fernández M, Estela JM, Asensi MÁ, Mañes J, Picó Y. Short-term oral toxicity of quercetin and pterostibene in Swiss mice. Toxicol Lett. 2006;164:S275–S6. https://doi.org/10.1016/j.toxlet.2006.07.232.
Article
Google Scholar
Barrenetxe J, Aranguren P, Grijalba A, Martinez-Penuela J, Marzo F, Urdaneta E. Effect of dietary quercetin and sphingomyelin on intestinal nutrient absorption and animal growth. Br J Nutr. 2006;95(3):455–61. https://doi.org/10.1079/BJN20051651.
Article
CAS
PubMed
Google Scholar
Bailey SA, Zidell RH, Perry RW. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol. 2004;32(4):448–66. https://doi.org/10.1080/01926230490465874.
Article
PubMed
Google Scholar
Lee B-H, Lee J-H, Yoon I-S, Lee J-H, Choi S-H, Pyo MK, Jeong SM, Choi WS, Shin TJ, Lee SM, Rhim H, Park YS, Han YS, Paik HD, Cho SG, Kim CH, Lim YH, Nah SY Human glycine α1 receptor inhibition by quercetin is abolished or inversed by α267 mutations in transmembrane domain 2. Brain Res 2007;1161:1–10, 1, doi: https://doi.org/10.1016/j.brainres.2007.05.057.
Lee B-H, Jung S-M, ngo Lee J-H, Kim J-H, Yoon I-S, Lee J-H, et al. Quercetin Inhibits the 5-Hydroxytryptamine Type 3 Receptormediated Ion Current by Interacting with Pre-Transmembrane Domain I. Molecules & Cells (Springer Science & Business Media BV). 2005;20(1).
Alexander SP. Flavonoids as antagonists at A1 adenosine receptors. Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of natural product derivatives. 2006;20(11):1009–12. https://doi.org/10.1002/ptr.1975.
Article
CAS
Google Scholar
Uzun FG, Kalender Y. Chlorpyrifos induced hepatotoxic and hematologic changes in rats: the role of quercetin and catechin. Food Chem Toxicol. 2013;55:549–56. https://doi.org/10.1016/j.fct.2013.01.056.
Article
CAS
PubMed
Google Scholar
Keskin E, DÖNMEZ NKG, Kandır S. Beneficial effect of quercetin on some Haematological parameters in Streptozotocin-induced diabetic rats. Bulletin of Environment, Pharmacology and Life Sciences. 2016;5(6):65–8.
CAS
Google Scholar
Selvakumar K, Bavithra S, Suganya S, Ahmad Bhat F, Krishnamoorthy G, Arunakaran J. Effect of quercetin on haematobiochemical and histological changes in the liver of polychlorined biphenyls-induced adult male wistar rats. Journal of biomarkers. 2013;2013:1–12. https://doi.org/10.1155/2013/960125.
Article
Google Scholar
Bahar E, Lee G-H, Bhattarai KR, Lee H-Y, Kim H-K, Handigund M, et al. Protective role of quercetin against manganese-induced injury in the liver, kidney, and lung; and hematological parameters in acute and subchronic rat models. Drug design, development and therapy. 2017;11:2605.
Article
CAS
Google Scholar
Mosawy S, Jackson D, Woodman O, Linden M. Treatment with quercetin and 3′, 4′-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo. J Thromb Thrombolysis. 2013;36(1):50–7. https://doi.org/10.1007/s11239-012-0827-2.
Article
CAS
PubMed
Google Scholar
Chen Y, Deuster P. Comparison of quercetin and dihydroquercetin: antioxidant-independent actions on erythrocyte and platelet membrane. Chem Biol Interact. 2009;182(1):7–12. https://doi.org/10.1016/j.cbi.2009.06.007.
Article
CAS
PubMed
Google Scholar
Chouhan S, Yadav A, Kushwah P, Kaul RK, Flora SJ. Silymarin and quercetin abrogates fluoride induced oxidative stress and toxic effects in rats. Molecular & Cellular Toxicology. 2011;7(1):25–32. https://doi.org/10.1007/s13273-011-0004-2.
Article
CAS
Google Scholar
Dwivedi N, Flora S. Dose dependent efficacy of quercetin in preventing arsenic induced oxidative stress in rat blood and liver. Journal of Cell and Tissue Research. 2011;11(1):2605.
CAS
Google Scholar
Nna VU, Akpan UP, Okon VE, Atangwho IJ. Hepatotoxicity following separate administration of two phosphodiesterase-5 inhibitors (sildenafil & tadalafil) and opioid (tramadol); evaluation of possible reversal following their withdrawal. Journal of Applied Pharmaceutical Science. 2015;5(08):105–13. https://doi.org/10.7324/JAPS.2015.50817.
Article
Google Scholar
Youssef H, Azza Z. Histopathological and biochemical effects of acute & chronic tramadol drug toxicity on liver, kidney and testicular function in adult male albino rats. J Med Toxicol Clin Forens Med. 2016;2(4):00060–8. https://doi.org/10.15406/frcij.2016.02.00060.
Article
Google Scholar
Awadalla EA, Salah-Eldin A-E. Histopathological and molecular studies on tramadol mediated hepato-renal toxicity in rats. J Pharm Biol Sci. 2015;10(6):90–102.
Google Scholar
Baghishani F, Mohammadipour A, Hosseinzadeh H, Hosseini M, Ebrahimzadeh-bideskan A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis. 2018;33(3):907–16. https://doi.org/10.1007/s11011-018-0194-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samaka R, Girgis N, Shams T. Acute toxicity and dependence of tramadol in albino rats: relationship of nestin and notch 1 as stem cell markers. J Am Sci. 2012;8(6):313–27.
Google Scholar
Bilir A, Erkasap N, Koken T, Gulec S, Kaygisiz Z, Tanriverdi B, et al. Effects of tramadol on myocardial ischemia-reperfusion injury. Scand Cardiovasc J. 2007;41(4):242–7. https://doi.org/10.1080/14017430701227747.
Article
CAS
PubMed
Google Scholar
Leppert W. Tramadol as an analgesic for mild to moderate cancer pain. Pharmacol Rep. 2009;61(6):978–92. https://doi.org/10.1016/S1734-1140(09)70159-8.
Article
CAS
PubMed
Google Scholar
Messarah M, Boumendjel A, Chouabia A, Klibet F, Abdennour C, Boulakoud MS, et al. Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. Exp Toxicol Pathol. 2010;62(3):301–10. https://doi.org/10.1016/j.etp.2009.04.009.
Article
CAS
PubMed
Google Scholar
Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2–3):325–37. https://doi.org/10.1016/j.ejphar.2008.03.008.
Article
CAS
PubMed
Google Scholar
Abarikwu S, Adesiyan A, Oyeloja T, Farombi E. Quercetin potentiates oxidative stress in the liver of rats exposed to the herbicide, atrazine. Advances in Environmental Research New York: Nova Science Publishers. 2012:487–502.
Muthukumaran S, Sudheer AR, Menon VP, Nalini N. Protective effect of quercetin on nicotine-induced prooxidant and antioxidant imbalance and DNA damage in Wistar rats. Toxicology. 2008;243(1–2):207–15. https://doi.org/10.1016/j.tox.2007.10.006.
Article
CAS
PubMed
Google Scholar
Geetha T, Malhotra V, Chopra K, Kaur IP. Antimutagenic and antioxidant/prooxidant activity of quercetin; 2005.
Google Scholar
Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med. 1999;26(1–2):107–16. https://doi.org/10.1016/S0891-5849(98)00167-1.
Article
CAS
Google Scholar
Boots AW, Kubben N, Haenen GR, Bast A. Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. Biochem Biophys Res Commun. 2003;308(3):560–5. https://doi.org/10.1016/S0006-291X(03)01438-4.
Article
CAS
Google Scholar
Choi EJ, Lee BH, Lee K, Chee K-M. Long-term combined administration of quercetin and daidzein inhibits quercetin-induced suppression of glutathione antioxidant defenses. Food Chem Toxicol. 2005;43(5):793–8. https://doi.org/10.1016/j.fct.2004.12.012.
Article
CAS
PubMed
Google Scholar
Choi EJ, Chee K-M, Lee BH. Anti-and prooxidant effects of chronic quercetin administration in rats. Eur J Pharmacol. 2003;482(1–3):281–5. https://doi.org/10.1016/j.ejphar.2003.09.067.
Article
CAS
PubMed
Google Scholar
Guzy J, Chovanová Z, Mareková M, Chavková Z, Tomeckova V, Mojzisova G, et al. Effect of quercetin on paracetamol-induced rat liver mitochondria dysfunction. BIOLOGIA-BRATISLAVA-. 2004;59(3):399–404.
CAS
Google Scholar
Spencer JP, Kuhnle GG, Williams RJ, Catherine R-E. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J. 2003;372(1):173–81. https://doi.org/10.1042/bj20021972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagard C, Malissin I, Indja W, Risède P, Chevillard L, Mégarbane B. Is naloxone the best antidote to reverse tramadol-induced neuro-respiratory toxicity in overdose? An experimental investigation in the rat. Clin Toxicol. 2018;56(8):737–43. https://doi.org/10.1080/15563650.2017.1401080.
Article
CAS
Google Scholar
Yang L, Li F, Ge W, Mi C, Wang R, Sun R. Protective effects of naloxone in two-hit seizure model. Epilepsia. 2010;51(3):344–53. https://doi.org/10.1111/j.1528-1167.2009.02250.x.
Article
CAS
PubMed
Google Scholar
Rehni AK, Singh I, Kumar M. Tramadol-induced seizurogenic effect: a possible role of opioid-dependent gamma-aminobutyric acid inhibitory pathway. Basic Clin Pharmacol Toxicol. 2008;103(3):262–6. Epub 2008/08/08. 18684224. https://doi.org/10.1111/j.1742-7843.2008.00276.x.
Gilbert P, Martin W. Antagonism of the convulsant effects of heroin, d-propoxyphene, meperidine, normeperidine and thebaine by naloxone in mice. J Pharmacol Exp Ther. 1975;192(3):538–41.
CAS
PubMed
Google Scholar
Saidi H, Ghadiri M, Abbasi S, Ahmadi SF. Efficacy and safety of naloxone in the management of postseizure complaints of tramadol intoxicated patients: a self-controlled study. Emergency medicine journal: EMJ. 2010;27(12):928–30. Epub 2010/04/10. 20378740. https://doi.org/10.1136/emj.2009.083162.
Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol. 2016;56:21–38. https://doi.org/10.1016/j.tifs.2016.07.004.
Article
CAS
Google Scholar
MacNee W. Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol. 2001;429(1–3):195–207. https://doi.org/10.1016/S0014-2999(01)01320-6.
Article
CAS
PubMed
Google Scholar
Xu H, He Y, Yang X, Liang L, Zhan Z, Ye Y, et al. Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. 2007, Anti-malarial agent artesunate inhibits TNF- -induced production of proinflammatory cytokines via inhibition of NF- B and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes.
Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem. 2011;22(3):293–9. https://doi.org/10.1016/j.jnutbio.2010.02.008.
Article
CAS
PubMed
Google Scholar
Boots AW, Wilms LC, Swennen EL, Kleinjans JC, Bast A, Haenen GR. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition. 2008;24(7–8):703–10. https://doi.org/10.1016/j.nut.2008.03.023.
Article
CAS
PubMed
Google Scholar
Marquardt KA, Alsop JA, Albertson TE. Tramadol exposures reported to statewide poison control system. Ann Pharmacother. 2005;39(6):1039–44. https://doi.org/10.1345/aph.1E577.
Article
CAS
PubMed
Google Scholar
Shadnia S, Soltaninejad K, Heydari K, Sasanian G, Abdollahi M. Tramadol intoxication: a review of 114 cases. Human & experimental toxicology. 2008;27(3):201–5. https://doi.org/10.1177/0960327108090270.
Article
CAS
Google Scholar
Hassanian-Moghaddam H, Farajidana H, Sarjami S, Owliaey H. Tramadol-induced apnea. Am J Emerg Med. 2013;31(1):26–31. https://doi.org/10.1016/j.ajem.2012.05.013.
Article
PubMed
Google Scholar