Birnbaum LS. The effect of environmental chemicals on human health. Fertil Steril. 2008;89: e31.
Article
PubMed
Google Scholar
Cremer J, Arnoldini M, Hwa T. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc Natl Acad Sci U S A. 2017;114:6438–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conti MI, Terrizzi AR, Lee CM, Mandalunis PM, Bozzini C, Piñeiro AE, Martínez Mdel P. Effects of lead exposure on growth and bone biology in growing rats exposed to simulated high altitude. Bull Environ Contam Toxicol. 2012;88:1033–7.
Article
CAS
PubMed
Google Scholar
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, et al. Risks for public health related to the presence of furan and methylfurans in food. Efsa j. 2017;15:e05005.
PubMed
PubMed Central
Google Scholar
Xu L, Sinclair AJ, Faiza M, Li D, Han X, Yin H, Wang Y. Furan fatty acids - Beneficial or harmful to health? Prog Lipid Res. 2017;68:119–37.
Article
CAS
PubMed
Google Scholar
Kataba A, Botha TL, Nakayama SMM, Yohannes YB, Ikenaka Y, Wepener V, Ishizuka M. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae. Comp Biochem Physiol C Toxicol Pharmacol. 2022;252:109215.
Article
CAS
PubMed
Google Scholar
Szymańska-Walkiewicz M, Glińska-Lewczuk K, Burandt P, Obolewski K. Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes. Int J Environ Res Public Health. 2022;19(7):4131.
Article
PubMed
PubMed Central
Google Scholar
Starowicz M, Ostaszyk A, Zieliński H. The Relationship between the Browning Index, Total Phenolics, Color, and Antioxidant Activity of Polish-Originated Honey Samples. Foods. 2021;10(5):967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rehman H, Jahan S, Ullah I, Thörnqvist PO, Jabbar M, Shoaib M, Aman F, John N. Effects of endocrine disruptor furan on reproductive physiology of Sprague Dawley rats: An F1 Extended One-Generation Reproductive Toxicity Study (EOGRTS). Hum Exp Toxicol. 2020;39:1079–94.
Article
CAS
PubMed
Google Scholar
Abd El-Hakim YM, Mohamed WA, El-Metwally AE. Spirulina platensis attenuates furan reprotoxicity by regulating oxidative stress, inflammation, and apoptosis in testis of rats. Ecotoxicol Environ Saf. 2018;161:25–33.
Article
CAS
PubMed
Google Scholar
Owumi SE, Adedara IA, Farombi EO, Oyelere AK. Protocatechuic acid modulates reproductive dysfunction linked to furan exposure in rats. Toxicology. 2020;442:152556.
Article
CAS
PubMed
Google Scholar
Owumi SE, Bello SA, Idowu TB, Arunsi UO, Oyelere AK. Protocatechuic acid protects against hepatorenal toxicities in rats exposed to Furan. Drug Chem Toxicol. 2022;45(4):1840-50. https://doi.org/10.1080/01480545.2021.1890109. Epub 2021 Feb 28.
Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019;191:419.
Article
PubMed
Google Scholar
Duzgoren-Aydin NS. Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ. 2007;385:182–95.
Article
CAS
PubMed
Google Scholar
Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A. Effect of lead on root growth. Front Plant Sci. 2013;4:175.
Article
PubMed
PubMed Central
Google Scholar
Charkiewicz AE, Backstrand JR. Lead Toxicity and Pollution in Poland. Int J Environ Res Public Health. 2020;17(12):4385. https://doi.org/10.3390/ijerph17124385.
Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8:55–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vorvolakos T, Arseniou S, Samakouri M. There is no safe threshold for lead exposure: Α literature review. Psychiatriki. 2016;27:204–14.
Article
PubMed
Google Scholar
Xu X, Cui Z, Wang X, Wang X, Zhang S. Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat. Ecotoxicol Environ Saf. 2018;151:161–9.
Article
CAS
PubMed
Google Scholar
Lopes AC, Peixe TS, Mesas AE, Paoliello MM. Lead Exposure and Oxidative Stress: A Systematic Review. Rev Environ Contam Toxicol. 2016;236:193–238.
PubMed
Google Scholar
Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ Int. 2018;120:404–20.
Article
CAS
PubMed
Google Scholar
Al-Megrin WA, Alkhuriji AF, Yousef AOS, Metwally DM, Habotta OA, Kassab RB, Abdel Moneim AE, El-Khadragy MF. Antagonistic Efficacy of Luteolin against Lead Acetate Exposure-Associated with Hepatotoxicity is Mediated via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activities. Antioxidants (Basel). 2019;9(1):10.
Article
Google Scholar
Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB, Abdel Moneim AE. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol Biol Rep. 2020;47:2591–603.
Article
CAS
PubMed
Google Scholar
Seok Y-J, Her J-Y, Kim Y-G, Kim MY, Jeong SY, Kim MK, Lee J-Y, Kim C-I, Yoon H-J, Lee K-G. Furan in Thermally Processed Foods - A Review. Toxicol Res. 2015;31:241–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooke GM, Taylor M, Bourque C, Curran I, Gurofsky S, Gill S. Effects of furan on male rat reproduction parameters in a 90-day gavage study. Reprod Toxicol. 2014;46:85–90.
Article
CAS
PubMed
Google Scholar
Karacaoglu E, Selmanoglu G. Effects of heat-induced food contaminant furan on reproductive system of male rats from weaning through postpuberty. Food Chem Toxicol. 2010;48:1293–301.
Article
CAS
PubMed
Google Scholar
EFSA. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA Journal. 2011;9:2347.
Google Scholar
Owumi SE, Otunla MT, Arunsi UO, Najophe ES. 3-Indolepropionic acid upturned male reproductive function by reducing oxido-inflammatory responses and apoptosis along the hypothalamic-pituitary-gonadal axis of adult rats exposed to chlorpyrifos. Toxicology. 2021;463:152996.
Article
CAS
PubMed
Google Scholar
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.
Article
PubMed
Google Scholar
Cressey D. Best way to kill lab animals sought. Nature. 2013;500:130–1.
Article
CAS
PubMed
Google Scholar
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol. 2021;36:e22962.
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Owumi SE, Irozuru CE, Arunsi UO, Oyelere AK. Caffeic acid protects against DNA damage, oxidative and inflammatory mediated toxicities, and upregulated caspases activation in the hepatorenal system of rats treated with aflatoxin B1. Toxicon. 2022;207:1–12.
Article
CAS
PubMed
Google Scholar
Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.
Article
CAS
PubMed
Google Scholar
Clairborne A. Catalase activity. Boca Raton, FL: CRC Press; 1995.
Google Scholar
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.
Article
CAS
PubMed
Google Scholar
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.
Article
CAS
PubMed
Google Scholar
Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11:151–69.
Article
CAS
PubMed
Google Scholar
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.
Article
CAS
PubMed
Google Scholar
Bergmeyer HI, Gawehn K, Grassl M. Methods of Enzymatic analysis. 2nd ed. New York, NY: Academic Press Incorporation; 1974.
Google Scholar
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by Thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.
Article
CAS
PubMed
Google Scholar
Owumi SE, Dim UJ. Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos. Toxicol Rep. 2019;6:202–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126:131–8.
Article
CAS
PubMed
Google Scholar
Granell S, Gironella M, Bulbena O, Panes J, Mauri M, Sabater L, Aparisi L, Gelpi E, Closa D. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med. 2003;31:525–30.
Article
CAS
PubMed
Google Scholar
Owumi SE, Adedara IA, Akomolafe AP, Farombi EO, Oyelere AK. Gallic acid enhances reproductive function by modulating oxido-inflammatory and apoptosis mediators in rats exposed to aflatoxin-B1. Exp Biol Med (Maywood). 2020;245:1016–28.
Article
CAS
Google Scholar
Owumi SE, Irozuru CE, Arunsi UO, Oyelere AK. Caffeic acid protects against DNA damage, oxidative and inflammatory mediated toxicities, and upregulated caspases activation in the hepatorenal system of rats treated with aflatoxin B(1). Toxicon. 2022;207:1–12.
Article
CAS
PubMed
Google Scholar
Bancroft JD, Gamble M. Theory and practise of histological techniques. 6th ed. Philadelphia: Churchill Livingstone Elsevier; 2008.
Google Scholar
Baş H, Pandır D, Kalender S. Furan-induced hepatotoxic and hematologic changes in diabetic rats: the protective role of lycopene. Arh Hig Rada Toksikol. 2016;67:194–203.
Article
PubMed
Google Scholar
Sudjarwo SA, Eraiko K, Sudjarwo GW. Koerniasari: Protective effects of piperine on lead acetate induced-nephrotoxicity in rats. Iran J Basic Med Sci. 2017;20:1227–31.
PubMed
PubMed Central
Google Scholar
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol. 2022;36: e22962.
Article
CAS
PubMed
Google Scholar
Hrycay EG, Bandiera SM. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. Adv Exp Med Biol. 2015;851:1–61.
Article
CAS
PubMed
Google Scholar
Hrycay EG, Bandiera SM. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Adv Pharmacol. 2015;74:35–84.
Article
CAS
PubMed
Google Scholar
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217:1915–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhyay S, Vaish S, Dhiman M. Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells. Mol Cell Biochem. 2019;450:135–47.
Article
CAS
PubMed
Google Scholar
Ganie SA, Haq E, Hamid A, Masood A, Zargar MA. Long dose exposure of hydrogen peroxide (H2O2) in albino rats and effect of Podophyllum hexandrum on oxidative stress. Eur Rev Med Pharmacol Sci. 2011;15:906–15.
CAS
PubMed
Google Scholar
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants (Basel, Switzerland). 2018;7:62.
CAS
Google Scholar
Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radical Biol Med. 2019;140:14–27.
Article
CAS
Google Scholar
Shaeib F, Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radic Biol Med. 2013;58:154–9.
Article
CAS
PubMed
Google Scholar
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol. 2021;11:605823.
Article
PubMed
PubMed Central
Google Scholar
Salama SA, Kabel AM. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration. Chem Biol Interact. 2020;330:109230.
Article
CAS
PubMed
Google Scholar
Yuan Y, Wang Z, Nan B, Yang C, Wang M, Ye H, Xi C, Zhang Y, Yan H. Salidroside alleviates liver inflammation in furan-induced mice by regulating oxidative stress and endoplasmic reticulum stress. Toxicology. 2021;461:152905.
Article
CAS
PubMed
Google Scholar
Ndrepepa G. Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36–51.
Article
CAS
PubMed
Google Scholar
Owumi SE, Otunla MT, Arunsi UO, Oyelere AK. Apigeninidin-enriched Sorghum bicolor (L. Moench) extracts alleviate Aflatoxin B(1)-induced dysregulation of male rat hypothalamic-reproductive axis. Exp Biol Med (Maywood). 2022;247(15):1301–16. https://doi.org/10.1177/15353702221098060.
Article
CAS
Google Scholar
Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys. 2018;640:47–52.
Article
CAS
PubMed
Google Scholar
Owumi SE, Anaikor RA, Arunsi UO, Adaramoye OA, Oyelere AK. Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach. J Food Biochem. 2021;45:e13615.
Article
CAS
PubMed
Google Scholar
Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78:6858–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pratomo IP, Noor DR, Kusmardi K, Rukmana A, Paramita RI, Erlina L, Fadilah F, Gayatri A, Fitriani M, Purnomo TTH, et al. Xanthine Oxidase-Induced Inflammatory Responses in Respiratory Epithelial Cells: A Review in Immunopathology of COVID-19. Int J Inflam. 2021;2021:1653392–1653392.
PubMed
PubMed Central
Google Scholar
Romagnoli M, Gomez-Cabrera MC, Perrelli MG, Biasi F, Pallardó FV, Sastre J, Poli G, Viña J. Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radic Biol Med. 2010;49:171–7.
Article
CAS
PubMed
Google Scholar
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9.
Article
CAS
PubMed
Google Scholar
Cross RK, Wilson KT. Nitric Oxide in Inflammatory Bowel Disease. Inflamm Bowel Dis. 2003;9:179–89.
Article
PubMed
Google Scholar
Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin Cancer Res. 2013;19:5557–63.
Article
CAS
PubMed
Google Scholar
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32:23–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owumi SE, Kazeem AI, Wu B, Ishokare LO, Arunsi UO, Oyelere AK. Apigeninidin-rich Sorghum bicolor (L. Moench) extracts suppress A549 cells proliferation and ameliorate toxicity of aflatoxin B1-mediated liver and kidney derangement in rats. Sci Rep. 2022;12:7438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Topinka J, Marvanová S, Vondrácek J, Sevastyanova O, Nováková Z, Krcmár P, Pencíková K, Machala M. DNA adducts formation and induction of apoptosis in rat liver epithelial “stem-like” cells exposed to carcinogenic polycyclic aromatic hydrocarbons. Mutat Res. 2008;638:122–32.
Article
CAS
PubMed
Google Scholar
Wang AG, Xia T, Chu QL, Zhang M, Liu F, Chen XM, Yang KD. Effects of fluoride on lipid peroxidation, DNA damage and apoptosis in human embryo hepatocytes. Biomed Environ Sci. 2004;17:217–22.
PubMed
Google Scholar
Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.
Article
CAS
PubMed
Google Scholar
Zhou Y, Wang S, Luo H, Xu F, Liang J, Ma C, Ren L, Wang H, Hou Y. Aflatoxin B1 induces microglia cells apoptosis mediated by oxidative stress through NF-κB signaling pathway in mice spinal cords. Environ Toxicol Pharmacol. 2022;90:103794.
Article
CAS
PubMed
Google Scholar
Mughal MJ, Xi P, Yi Z, Jing F. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget. 2017;8:8239–49.
Article
PubMed
Google Scholar
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15:144–58.
Article
PubMed
Google Scholar
Nalkurthi C, Schroder WA, Melino M, Irvine KM, Nyuydzefe M, Chen W, Liu J, Teng MWL, Hill GR, Bertolino P, et al. ROCK2 inhibition attenuates profibrogenic immune cell function to reverse thioacetamide-induced liver fibrosis. JHEP Rep. 2022;4:100386.
Article
PubMed
Google Scholar
Gupta N, Gupta DK, Sharma PK. Condition factor and organosomatic indices of parasitized Rattus rattus as indicators of host health. J Parasit Dis. 2017;41:21–8.
Article
PubMed
Google Scholar