Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2018;68(1):361–71. https://doi.org/10.1002/hep.29724.
Article
PubMed
Google Scholar
Fang Y-L, Chen H, Wang C-L, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24(27):2974. https://doi.org/10.3748/wjg.v24.i27.2974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–61. https://doi.org/10.1016/j.metabol.2016.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caligiuri A, Gentilini A, Marra F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. https://doi.org/10.3390/ijms17091575.
Article
CAS
PubMed Central
Google Scholar
Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia. 2016;59(5):928–32. https://doi.org/10.1007/s00125-016-3898-3.
Article
CAS
PubMed
Google Scholar
Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23(9):435–43. https://doi.org/10.1016/j.tem.2012.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polyzos SA, Aronis KN, Kountouras J, Raptis DD, Vasiloglou MF, Mantzoros CS. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Springer. 2016. https://doi.org/10.1007/s00125-015-3769-3.
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. https://doi.org/10.1126/science.7678183.
Article
CAS
PubMed
Google Scholar
Montecucco F, Mach F. Does non-alcoholic fatty liver disease (NAFLD) increase cardiovascular risk? Endocr Metab Immune Disord Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2008;8(4):301–7 doi.org/10.2174/187153008786848268.
CAS
Google Scholar
Kakino S, Ohki T, Nakayama H, Yuan X, Otabe S, Hashinaga T, et al. Pivotal role of TNF-α in the development and progression of nonalcoholic fatty liver disease in a murine model. Horm Metab Res. 2018;50(01):80–7. https://doi.org/10.1055/s-0043-118666.
Article
CAS
PubMed
Google Scholar
Selzner N, Selzner M, Odermatt B, Tian Y, van Rooijen N, Clavien PA. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell–dependent release of TNF-α/IL-6 in mice. Gastroenterology. 2003;124(3):692–700. https://doi.org/10.1053/gast.2003.50098.
Article
CAS
PubMed
Google Scholar
Douglas H. TGF-β in wound healing: a review. J Wound Care. 2010;19(9):403–6. https://doi.org/10.12968/jowc.2010.19.9.78235.
Article
CAS
PubMed
Google Scholar
Braunersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol: WJG. 2012;18(8):727. https://doi.org/10.3748/wjg.v18.i8.727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Dluz S, Graves DT, Zhang L, Antoniades HN, Hollander W, et al. Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad Sci. 1992;89(15):6953–7. https://doi.org/10.1073/pnas.89.15.6953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kassel KM, Guo GL, Tawfik O, Luyendyk JP. Monocyte chemoattractant protein-1 deficiency does not affect steatosis or inflammation in livers of mice fed a methionine–choline-deficient diet. Lab Investig. 2010;90(12):1794–804. https://doi.org/10.1038/labinvest.2010.143.
Article
CAS
PubMed
Google Scholar
Brocker CN, Yue J, Kim D, Qu A, Bonzo JA, Gonzalez FJ. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells. Am J Physiol Gastrointest Liver Physiol. 2017;312(3):G283–G99. https://doi.org/10.1152/ajpgi.00205.2016.
Article
PubMed
PubMed Central
Google Scholar
Moseti D, Regassa A, Kim W-K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016;17(1):124. https://doi.org/10.3390/ijms17010124.
Article
CAS
PubMed Central
Google Scholar
Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator–activated receptor (PPAR) α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARα, PPARγ, and their combination. Diabetes. 2005;54(12):3358–70. https://doi.org/10.2337/diabetes.54.12.3358.
Article
CAS
PubMed
Google Scholar
Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79(11):1100–7. https://doi.org/10.1016/j.lfs.2006.03.021.
Article
CAS
PubMed
Google Scholar
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21. https://doi.org/10.1002/hep.20701.
Article
PubMed
Google Scholar
Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014;9(12):e115922. https://doi.org/10.1371/journal.pone.0115922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–48. https://doi.org/10.1016/j.metabol.2015.12.012.
Article
CAS
PubMed
Google Scholar
Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36. https://doi.org/10.1038/nrendo.2016.135.
Article
CAS
PubMed
Google Scholar
Chen L, Li L, Chen J, Li L, Zheng Z, Ren J, et al. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells. Oncotarget. 2015;6(40):42530. https://doi.org/10.18632/oncotarget.6466.
Article
PubMed
PubMed Central
Google Scholar
Delerive P, De Bosscher K, Besnard S, Berghe WV, Peters JM, Gonzalez FJ, et al. Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J Biol Chem. 1999;274(45):32048–54. https://doi.org/10.1074/jbc.274.45.32048.
Article
CAS
PubMed
Google Scholar
Wang L, Nan Y, Yuan X. Effect of rosiglitazone on the expression of tumor necrosis factor-α in the liver tissue of mice with non-alcoholic steatohepatitis; 2017.
Google Scholar
Kumar DP, Caffrey R, Marioneaux J, Santhekadur PK, Bhat M, Alonso C, et al. The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci Rep. 2020;10(1):1–14. https://doi.org/10.1038/s41598-020-66458-z.
Article
CAS
Google Scholar
Chen Z, Yu R, Xiong Y, Du F, Zhu S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 2017;16(1):203. https://doi.org/10.1186/s12944-017-0572-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Leclercq I, Brymora JM, Xu N. Ramezani–Moghadam M, London RM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009;137(2):713–23. e1. https://doi.org/10.1053/j.gastro.2009.04.011.
Article
CAS
PubMed
Google Scholar
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380(1–2):24–30. https://doi.org/10.1016/j.cca.2007.01.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haluzik M, Lacinova Z, Dolinkova M, Haluzikova D, Housa D, Horinek A, et al. Improvement of insulin sensitivity after peroxisome proliferator-activated receptor-α agonist treatment is accompanied by paradoxical increase of circulating resistin levels. Endocrinology. 2006;147(9):4517–24. https://doi.org/10.1210/en.2005-1624.
Article
CAS
PubMed
Google Scholar
Ikejima K, Honda H, Yoshikawa M, Hirose M, Kitamura T, Takei Y, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology. 2001;34(2):288–97. https://doi.org/10.1053/jhep.2001.26518.
Article
CAS
PubMed
Google Scholar
Walter R, Wanninger J, Bauer S, Eisinger K, Neumeier M, Weiss TS, et al. Adiponectin reduces connective tissue growth factor in human hepatocytes which is already induced in non-fibrotic non-alcoholic steatohepatitis. Exp Mol Pathol. 2011;91(3):740–4. https://doi.org/10.1016/j.yexmp.2011.09.006.
Article
CAS
PubMed
Google Scholar
An L, Wang X, Cederbaum AI. Cytokines in alcoholic liver disease. Arch Toxicol. 2012;86(9):1337–48. https://doi.org/10.1007/s00204-012-0814-6.
Article
CAS
PubMed
Google Scholar
Morris AM, Sennello JA, Fayad RA, Eckel RH, Dinarello CA, Fantuzzi G. T cell–mediated hepatic inflammation modulates adiponectin levels in mice: role of tumor necrosis factor α. Metabolism. 2006;55(4):555–9. https://doi.org/10.1016/j.metabol.2005.11.008.
Article
CAS
PubMed
Google Scholar
Zhang B, Berger J, Hu E, Szalkowski D, White-Carrington S, Spiegelman BM, et al. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol. 1996;10(11):1457–66. https://doi.org/10.1210/mend.10.11.8923470.
Article
CAS
PubMed
Google Scholar
Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y, et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology. 2003;125(6):1796–807. https://doi.org/10.1053/j.gastro.2003.08.029.
Article
CAS
PubMed
Google Scholar
Koehler E, Swain J, Sanderson S, Krishnan A, Watt K, Charlton M. Growth hormone, dehydroepiandrosterone and adiponectin levels in non-alcoholic steatohepatitis: an endocrine signature for advanced fibrosis in obese patients. Liver Int. 2012;32(2):279–86. https://doi.org/10.1111/j.1478-3231.2011.02637.x.
Article
CAS
PubMed
Google Scholar
Latif HA, Assal HS, Mahmoud M, Rasheed WI. Role of serum adiponectin level in the development of liver cirrhosis in patients with hepatitis C virus. Clin Exp Med. 2011;11(2):123–9. https://doi.org/10.1007/s10238-010-0108-3.
Article
CAS
PubMed
Google Scholar
Jain MR, Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, et al. Dual PPAR α/γ agonist Saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 2018;38(6):1084–94. https://doi.org/10.1111/liv.13634.
Article
CAS
PubMed
Google Scholar
Krishnappa M, Patil K, Parmar K, Trivedi P, Mody N, Shah C, et al. Effect of saroglitazar 2 mg and 4 mg on glycemic control, lipid profile and cardiovascular disease risk in patients with type 2 diabetes mellitus: a 56-week, randomized, double blind, phase 3 study (PRESS XII study). Cardiovasc Diabetol. 2020;19(1):1–13. https://doi.org/10.1186/s12933-020-01073-w.
Article
CAS
Google Scholar
Goyal O, Nohria S, Goyal P, Kaur J, Sharma S, Sood A, et al. Saroglitazar in patients with non-alcoholic fatty liver disease and diabetic dyslipidemia: a prospective, observational, real world study. Sci Rep. 2020;10(1):1–9. https://doi.org/10.1038/s41598-020-78342-x.
Article
CAS
Google Scholar
Haliakon S, Doare L, Foufelle F, Kergoat M, Guerre-Millo M, Berthault M-F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes. 1997;46(9):1393–9. https://doi.org/10.2337/diab.46.9.1393.
Article
Google Scholar
Boden G, Zhang M. Recent findings concerning thiazolidinediones in the treatment of diabetes. Expert Opin Investig Drugs. 2006;15(3):243–50. https://doi.org/10.1517/13543784.15.3.243.
Article
CAS
PubMed
Google Scholar
de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes. 2001;50(8):1863–71. https://doi.org/10.2337/diabetes.50.8.1863.
Article
PubMed
Google Scholar
Hermansen K, Mortensen LS. Bodyweight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus. Drug Saf. 2007;30(12):1127–42. https://doi.org/10.2165/00002018-200730120-00005.
Article
CAS
PubMed
Google Scholar
Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab. 2008;10(12):1204–11. https://doi.org/10.1111/j.1463-1326.2008.00880.x.
Article
CAS
PubMed
Google Scholar
Hoivik DJ, Qualls CW Jr, Mirabile RC, Cariello NF, Kimbrough CL, Colton HM, et al. Fibrates induce hepatic peroxisome and mitochondrial proliferation without overt evidence of cellular proliferation and oxidative stress in cynomolgus monkeys. Carcinogenesis. 2004;25(9):1757–69. https://doi.org/10.1093/carcin/bgh182.
Article
CAS
PubMed
Google Scholar
Abd El-Haleim EA, Bahgat AK, Saleh S. Effects of combined PPAR-γ and PPAR-α agonist therapy on fructose induced NASH in rats: Modulation of gene expression. Eur J Pharmacol. 2016;773:59–70. https://doi.org/10.1016/j.ejphar.2016.01.011.
Article
CAS
PubMed
Google Scholar