Stahl S, Briley M. Understanding pain in depression. Hum Psychopharmacol. 2004;19(Suppl 1):S9–S13. https://doi.org/10.1002/hup.619.
Article
PubMed
Google Scholar
Wilson KG, Eriksson MY, D'Eon JL, Mikail SF, Emery PC. Major depression and insomnia in chronic pain. Clin J Pain. 2002;18(2):77–83. https://doi.org/10.1097/00002508-200203000-00002.
Article
PubMed
Google Scholar
Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A, et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010;13(10):1265–70. https://doi.org/10.1038/nn.2632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaetani S, Dipasquale P, Romano A, et al. The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs. Int Rev Neurobiol. 2009;85:57–72. https://doi.org/10.1016/S0074-7742(09)85005-8.
Article
CAS
PubMed
Google Scholar
Ahn K, Douglas SJ and Cravatt BF. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin Drug Discov 2009; 4(7): 763–784.: 763–784.
Di Marzo V, Melck D, Bisogno T, et al. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. |21,: 521.
Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(Suppl 1):10–4. https://doi.org/10.1111/j.1365-2826.2008.01671.x.
Article
CAS
PubMed
Google Scholar
Graham ES, Ashton JC and Glass M. Cannabinoid Receptors: A brief history and what not. Front Biosci (Landmark Ed) 2009; 14: 944–957. DOI: https://doi.org/10.2741/3288, Cannabinoid Receptors: A brief history and "what's hot", 14.
Howlett AC. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 2002;68-69:619–31. https://doi.org/10.1016/s0090-6980(02)00060-6.
Article
CAS
PubMed
Google Scholar
Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140(5):790–801. https://doi.org/10.1038/sj.bjp.0705467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol. 2000;129(2):227–30. https://doi.org/10.1038/sj.bjp.0703050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zygmunt PM, Petersson J, Andersson DA, Chuang HH, Sørgård M, di Marzo V, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400(6743):452–7. https://doi.org/10.1038/22761.
Article
CAS
PubMed
Google Scholar
Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993;46(5):791–6. https://doi.org/10.1016/0006-2952(93)90486-g.
Article
CAS
PubMed
Google Scholar
Basile AS, Hanus L, Mendelson WB. Characterization of the hypnotic properties of oleamide. Neuroreport. 1999;10(5):947–51. https://doi.org/10.1097/00001756-199904060-00010.
Article
CAS
PubMed
Google Scholar
Cheer JF, Cadogan AK, Marsden CA, Fone KC, Kendall DA. Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology. 1999;38(4):533–41. https://doi.org/10.1016/s0028-3908(98)00208-1.
Article
CAS
PubMed
Google Scholar
Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, et al. Chemical characterization of a family of brain lipids that induce sleep. Science. 1995;268(5216):1506–9. https://doi.org/10.1126/science.7770779.
Article
CAS
PubMed
Google Scholar
Leggett JD, Aspley S, Beckett SR, et al. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol. 2004;141(2):253–62. https://doi.org/10.1038/sj.bjp.0705607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mechoulam R, Fride E, Hanus L, et al. Anandamide may mediate sleep induction. Nature. 1997;389(6646):25–6. https://doi.org/10.1038/37891.
Article
CAS
PubMed
Google Scholar
Fowler CJ, Naidu PS, Lichtman A, Onnis V. The case for the development of novel analgesic agents targeting both fatty acid amide hydrolase and either cyclooxygenase or TRPV1. Br J Pharmacol. 2009;156(3):412–9. https://doi.org/10.1111/j.1476-5381.2008.00029.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garavito RM, Malkowski MG, DeWitt DL. The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat. 2002;68-69:129–52. https://doi.org/10.1016/s0090-6980(02)00026-6.
Article
PubMed
Google Scholar
Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69(1):145–82. https://doi.org/10.1146/annurev.biochem.69.1.145.
Article
CAS
PubMed
Google Scholar
Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–5. https://doi.org/10.1038/newbio231232a0.
Article
CAS
PubMed
Google Scholar
Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38(1):97–120. https://doi.org/10.1146/annurev.pharmtox.38.1.97.
Article
CAS
PubMed
Google Scholar
Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, et al. Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem. 1996;240(1):53–62. https://doi.org/10.1111/j.1432-1033.1996.0053h.x.
Article
CAS
PubMed
Google Scholar
Abramovitz M, Metters KM. Prostanoid receptors. Ann Rep Med Chem. 1998;33:223–31. https://doi.org/10.1016/S0065-7743(08)61087-8.
Article
CAS
Google Scholar
Fowler CJ, Borjesson M, Tiger G. Differences in the pharmacological properties of rat and chicken brain fatty acid amidohydrolase. Br J Pharmacol. 2000;131(3):498–504. https://doi.org/10.1038/sj.bjp.0703569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naidu PS, Booker L, Cravatt BF, Lichtman AH. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther. 2009;329(1):48–56. https://doi.org/10.1124/jpet.108.143487.
Article
CAS
PubMed
Google Scholar
Sasso O, Bertorelli R, Bandiera T, Scarpelli R, Colombano G, Armirotti A, et al. Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions. Pharmacol Res. 2012;65(5):553–63. https://doi.org/10.1016/j.phrs.2012.02.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishay P, Schmidt H, Marian C, Häussler A, Wijnvoord N, Ziebell S, et al. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLoS One. 2010;5(5):e10628. https://doi.org/10.1371/journal.pone.0010628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duggan KC, Hermanson DJ, Musee J, Prusakiewicz JJ, Scheib JL, Carter BD, et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat Chem Biol. 2011;7(11):803–9. https://doi.org/10.1038/nchembio.663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hermanson DJ, Hartley ND, Gamble-George J, Brown N, Shonesy BC, Kingsley PJ, et al. Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat Neurosci. 2013;16(9):1291–8. https://doi.org/10.1038/nn.3480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staniaszek LE, Norris LM, Kendall DA, Barrett DA, Chapman V. Effects of COX-2 inhibition on spinal nociception: the role of endocannabinoids. Br J Pharmacol. 2010;160(3):669–76. https://doi.org/10.1111/j.1476-5381.2010.00703.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozak KR, Rowlinson SW, Marnett LJ. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem. 2000;275(43):33744–9. https://doi.org/10.1074/jbc.M007088200.
Article
CAS
PubMed
Google Scholar
Rouzer CA, Marnett LJ. Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids. J Biol Chem. 2008;283(13):8065–9. https://doi.org/10.1074/jbc.R800005200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Windsor MA, Hermanson DJ, Kingsley PJ, Xu S, Crews BC, Ho W, et al. Substrate-selective inhibition of Cyclooxygenase-2: development and evaluation of achiral Profen probes. ACS Med Chem Lett. 2012;3(9):759–63. https://doi.org/10.1021/ml3001616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaser ST, Kaczocha M. Cyclooxygenase-2 mediates anandamide metabolism in the mouse brain. J Pharmacol Exp Ther. 2010;335(2):380–8. https://doi.org/10.1124/jpet.110.168831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Alger BE. Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat Neurosci. 2004;7(7):697–8. https://doi.org/10.1038/nn1262.
Article
CAS
PubMed
Google Scholar
Prusakiewicz JJ, Duggan KC, Rouzer CA, Marnett LJ. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry. 2009;48(31):7353–5. https://doi.org/10.1021/bi900999z.
Article
CAS
PubMed
Google Scholar
Fowler CJ, Stenstrom A, Tiger G. Ibuprofen inhibits the metabolism of the endogenous cannabimimetic agent anandamide. Pharmacol Toxicol. 1997;80(2):103–7. https://doi.org/10.1111/j.1600-0773.1997.tb00291.x.
Article
CAS
PubMed
Google Scholar
Fowler CJ, Tiger G, Stenstrom A. Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure-activity relationship. J Pharmacol Exp Ther. 1997;283(2):729–34.
CAS
PubMed
Google Scholar
Garle MJ, Clark JS and Alexander SPH. A fluorescence-derivatisation assay for fatty acid amide hydrolase activity. 2005; pA2 Online. E-journal of the British Pharmacological Society.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75. https://doi.org/10.1016/S0021-9258(19)52451-6.
Article
CAS
PubMed
Google Scholar
Mana H, Spohn U. Sensitive and selective flow injection analysis of hydrogen sulfite/sulfur dioxide by fluorescence detection with and without membrane separation by gas diffusion. Anal Chem. 2001;73(13):3187–92. https://doi.org/10.1021/ac001049q.
Article
CAS
PubMed
Google Scholar
De Bank PA, Kendall DA, Alexander SPH. A spectrophotometric assay for fatty acid amide hydrolase suitable for high throughput screening. Biochem Pharmacol. 2005;69(8):1187–93. https://doi.org/10.1016/j.bcp.2005.01.012.
Article
CAS
PubMed
Google Scholar
Patricelli MP, Cravatt BF. Fatty acid amide hydrolase competitively degrades bioactive amides and esters through a nonconventional catalytic mechanism. Biochemistry. 1999;38(43):14125–30. https://doi.org/10.1021/bi991876p.
Article
CAS
PubMed
Google Scholar
Ueda N, Yamanaka K, Terasawa Y, Yamamoto S. An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett. 1999;454(3):267–70. https://doi.org/10.1016/s0014-5793(99)00820-0.
Article
CAS
PubMed
Google Scholar
Ueda N, Yamanaka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem. 2001;276(38):35552–7. https://doi.org/10.1074/jbc.M106261200.
Article
CAS
PubMed
Google Scholar
Boger DL, Fecik RA, Patterson JE, Miyauchi H, Patricelli MP, Cravatt BF. Fatty acid amide hydrolase substrate specificity. Bioorg Med Chem Lett. 2000;10(23):2613–6. https://doi.org/10.1016/s0960-894x(00)00528-x.
Article
CAS
PubMed
Google Scholar
Wakamatsu K, Masaki T, Itoh F, Kondo K, Sudo K. Isolation of fatty acid amide as an angiogenic principle from bovine mesentery. Biochem Biophys Res Commun. 1990;168(2):423–9. https://doi.org/10.1016/0006-291x(90)92338-z.
Article
CAS
PubMed
Google Scholar
Zaitone SA, El-Wakeil AF, Abou-El-Ela SH. Inhibition of fatty acid amide hydrolase by URB597 attenuates the anxiolytic-like effect of acetaminophen in the mouse elevated plus-maze test. Behav Pharmacol. 2012;23(4):417–25. https://doi.org/10.1097/FBP.0b013e3283566065.
Article
CAS
PubMed
Google Scholar
Maccarrone M, Bari M, Menichelli A, del Principe D, Finazzi Agrò A. Anandamide activates human platelets through a pathway independent of the arachidonate cascade. FEBS Lett. 1999;447(2-3):277–82. https://doi.org/10.1016/s0014-5793(99)00308-7.
Article
CAS
PubMed
Google Scholar
Bertolacci L, Romeo E, Veronesi M, Magotti P, Albani C, Dionisi M, et al. A binding site for nonsteroidal anti-inflammatory drugs in fatty acid amide hydrolase. J Am Chem Soc. 2013;135(1):22–5. https://doi.org/10.1021/ja308733u.
Article
CAS
PubMed
Google Scholar
Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A. 1997;94(6):2238–42. https://doi.org/10.1073/pnas.94.6.2238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006;12(1):21–38. https://doi.org/10.1111/j.1527-3458.2006.00021.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei BQ, Mikkelsen TS, McKinney MK, et al. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem. 2006;281(48):36569–78. https://doi.org/10.1074/jbc.M606646200.
Article
CAS
PubMed
Google Scholar
Favia AD, Habrant D, Scarpelli R, Migliore M, Albani C, Bertozzi SM, et al. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor. J Med Chem. 2012;55(20):8807–26. https://doi.org/10.1021/jm3011146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler CJ, Holt S, Tiger G. Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. J Enzyme Inhib Med Chem. 2003;18(1):55–8. https://doi.org/10.1080/1475636021000049726.
Article
CAS
PubMed
Google Scholar
Holt S, Nilsson J, Omeir R, Tiger G, Fowler CJ. Effects of pH on the inhibition of fatty acid amidohydrolase by ibuprofen. Br J Pharmacol. 2001;133(4):513–20. https://doi.org/10.1038/sj.bjp.0704113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bisogno T, Sepe N, Melck D, et al. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem J. 1997;322(Pt 2):671–7. https://doi.org/10.1042/bj3220671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB. Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochim Biophys Acta. 1995;1257(3):249–56. https://doi.org/10.1016/0005-2760(95)00087-s.
Article
PubMed
Google Scholar
Maurelli S, Bisogno T, De Petrocellis L, et al. Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 'anandamide amidohydrolase'. FEBS Lett. 1995;377(1):82–6. https://doi.org/10.1016/0014-5793(95)01311-3.
Article
CAS
PubMed
Google Scholar
Patricelli MP, Lashuel HA, Giang DK, Kelly JW, Cravatt BF. Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization. Biochemistry. 1998;37(43):15177–87. https://doi.org/10.1021/bi981733n.
Article
CAS
PubMed
Google Scholar
Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995;270(40):23823–7. https://doi.org/10.1074/jbc.270.40.23823.
Article
CAS
PubMed
Google Scholar
Desarnaud F, Cadas H, Piomelli D. Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization. J Biol Chem. 1995;270(11):6030–5. https://doi.org/10.1074/jbc.270.11.6030.
Article
CAS
PubMed
Google Scholar
Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, et al. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep. 2020;10(1):2292. https://doi.org/10.1038/s41598-020-59120-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt S, Paylor B, Boldrup L, Alajakku K, Vandevoorde S, Sundström A, et al. Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin. Eur J Pharmacol. 2007;565(1-3):26–36. https://doi.org/10.1016/j.ejphar.2007.02.051.
Article
CAS
PubMed
Google Scholar
Scott HE. Anti-inflammatory agents. MERCK veterinary manuals. 2014 Retrieved January 21, 2015 from Dialog database on worldwide web DOI: http://www.merckmanuals.com/vet/pharmacology/anti-inflammatory _agents/nonsteroidal_anti-inflammatory_drugs.html.
Dongdem JT, Dawson SP, Alexander SPH. Characterization of [3-(3-carbamoylphenyl) phenyl] N-cyclohexyl carbamate, an inhibitor of FAAH: effect on rat liver FAAH and HEK293T-FAAH-2 deamination of oleamide, arachidonamide and stearoylamide. Asian J Pharmacol Toxicol. 2016;04:01–11.
Google Scholar
Lichtman AH, Naidu PS, Booker L, et al. Targetting FAAH and COX to treat visceral pain. FASEB J 2008; 22: . DOI: https://doi.org/10.1096/fasebj.22.1_supplement.1125.12.
Guindon J, LoVerme J, De Lean A, et al. Synergistic antinociceptive effects of anandamide, an endocannabinoid, and nonsteroidal anti-inflammatory drugs in peripheral tissue: a role for endogenous fatty-acid ethanolamides? Eur J Pharmacol. 2006;550(1-3):68–77. https://doi.org/10.1016/j.ejphar.2006.08.045.
Article
CAS
PubMed
Google Scholar
Naidu PS and Lichtman AH. Synergistic antinociceptive effects of URB597 and diclofenac in a mouse visceral pain model. . In: 17th Annual symposium on the cannabinoids, Vermont International Cannabioid Research Society Burlington, Vermont USA, 2007.
Blain H, Boileau C, Lapicque F, Nédélec E, Lœuille D, Guillaume C, et al. Limitation of the in vitro whole blood assay for predicting the COX selectivity of NSAIDs in clinical use. Br J Clin Pharmacol. 2002;53(3):255–65. https://doi.org/10.1046/j.0306-5251.2001.01533.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A. 1993;90(24):11693–7. https://doi.org/10.1073/pnas.90.24.11693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao P, Knaus EE. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008;11:81s–110s. https://doi.org/10.18433/j3t886.
Article
PubMed
Google Scholar
Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A. 1999;96(13):7563–8. https://doi.org/10.1073/pnas.96.13.7563.
Article
CAS
PubMed
PubMed Central
Google Scholar