Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8:185–92.
Article
PubMed
Google Scholar
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.
Article
PubMed
Google Scholar
Padwal RS, Sharma AM. Prevention of cardiovascular disease: obesity, diabetes and the metabolic syndrome. Can J Cardiol. 2010;26(Suppl C):18C–20C.
Article
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention. National Diabetes Statistics Report: estimates of diabetes and its burden in the United States, 2014. Atlanta, GA: US Department of Health and Human Services; 2014.
Google Scholar
Wamil M, Seckl JR. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discov TodayDrug Discov Today. 2007;12:504–20.
Article
CAS
Google Scholar
Rask E, Walker BR, Söderberg S, Livingstone DE, Eliasson M, Johnson O, Andrew R, Olsson T. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87:3330–6.
PubMed
CAS
Google Scholar
Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–66.
Article
PubMed
CAS
Google Scholar
Anagnostis P, Katsiki N, Adamidou F, Athyros VG, Karagiannis A, Kita M, Mikhailidis DP. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metabolism. 2013;62:21–33.
Article
PubMed
CAS
Google Scholar
Ge R, Huang Y, Liang G, Li X. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors as promising therapeutic drugs for diabetes: status and development. Curr Med Chem. 2010;17:412–22.
Article
PubMed
CAS
Google Scholar
Wang M. Inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 in antidiabetic therapy. Handb Exp Pharmacol. 2011;203:127–46.
Article
CAS
Google Scholar
Chang LL, Wun AWS, Wang PS. Recovery from developmental nonylphenol exposure is possible for female rats. Chem Biol Interact. 2014;221:52–60.
Article
PubMed
CAS
Google Scholar
Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, Kenyon CJ, Walker BR. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology. 2000;141:560–3.
Article
PubMed
CAS
Google Scholar
Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.
Article
PubMed
CAS
Google Scholar
Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, Johnson O, Walker BR. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86:1418–21.
Article
PubMed
CAS
Google Scholar
Morton NM, Holmes MC, Fievet C, Staels B, Tailleux A, Mullins JJ, Seckl JR. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11β-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem. 2001;276:41293–300.
Article
PubMed
CAS
Google Scholar
Courtney R, Stewart PM, Toh M, Ndongo MN, Calle RA, Hirshberg B. Modulation of 11beta-hydroxysteroid dehydrogenase (11betaHSD) activity biomarkers and pharmacokinetics of PF-00915275, a selective 11betaHSD1 inhibitor. Clin Endocrinol Metab. 2008;93:550–6.
Article
CAS
Google Scholar
Chang LL, Wun WS, Wang PS. Nonylphenol-induced hyperadrenalism can be reversed/alleviated by inhibiting of 11-β hydroxysteroid dehydrogenase type. Environ Toxicol Pharmacol. 2016;44:1–12.
Article
PubMed
CAS
Google Scholar
Eijken M, Hewison M, Cooper MS, de Jong FH, Chiba H, Stewart PM, Uitterlinden AG, Pols HA, van Leeuwen JP. 11 beta-Hydroxysteroid dehydrogenase expression and glucocorticoid synthesis are directed by a molecular switch during osteoblast differentiation. Mol Endocrinol. 2005;19:621–31.
Article
PubMed
CAS
Google Scholar
McCormick KL, Wang X, Mick GJ. Evidence that the 11 beta-hydroxysteroid dehydrogenase (11beta-HSD1) is regulated by pentose pathway flux. Studies in rat adipocytes and microsomes. J Biol Chem. 2006;281:341–7.
Article
PubMed
CAS
Google Scholar
Chang LL, Wun W-SA, Wang PS. In utero and neonatal exposure to nonylphenol develops hyperadrenalism and metabolic syndrome late in life. I. First generation (F1). Toxicology. 2012;301:40–9.
Article
PubMed
CAS
Google Scholar
Lo MJ, Kau MM, Chen YH, Tsai SC, Chiao YC, Chen JJ, Liaw C, Lu CC, Lee BP, Chen SC, Fang VS, Ho LT, Wang PS. Acute effects of thyroid hormones on the production of adrenal cAMP and corticosterone in male rats. Am J Phys. 1998;274(2 Pt 1):E238–45.
CAS
Google Scholar
Kau MM, Chen JJ, Wang SW, Cho WL, Wang PS. Age-related impairment of aldosterone secretion in zona glomerulosa cells of ovariectomized rats. J Investig Med. 1999;47:425–32.
PubMed
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
PubMed
CAS
Google Scholar
Lo MJ, Chang LL, Wang PS. Effect of estradiol on corticosterone secretion in ovariectomized rats. J Cell Biochem. 2000;77:560–8.
Article
PubMed
CAS
Google Scholar
Ademollo N, Ferrara F, Delis M, Fabietti F, Funari E. Nonylphenol and octylphenol in human breast milk. Environ Int. 2008;34:984–7.
Article
PubMed
CAS
Google Scholar
Cunny HC, Mayes BA, Rosica KA, Trutter JA, Van Miller JP. Subcronic toxicity (90 day) study with Para-nonylphenol in rats. Regul Toxicol Pharmacol. 1997;26:172–8.
Article
PubMed
CAS
Google Scholar
Ferguson SA, Delclos KB, Newbold RR, Flynn KM. Few effects of multi-generational dietary exposure to genistein or nonylyphenol on sodium solution intake in male and female Sprague-Dawley rats. Neurotoxicol Teratol. 2009;31:143–8.
Article
PubMed
CAS
Google Scholar
Hossaini A, Dalgaard M, Vinggaard AM, Frandsen H, Larsen J-J. In utero reproductive study in rats exposed to nonylphenol. Reprod Toxicol. 2001;15:537–43.
Article
PubMed
CAS
Google Scholar
Jie X, Yang W, Lie Y, Hashim JH, Liu X-Y, Fan Q-Y, Yan L. Toxic effect of gestational exposure to nonylphenol on F1 male rats. Birth Defects Res B Dev Reprod Toxicol. 2010;89:418–28.
Article
PubMed
CAS
Google Scholar
Nagao T, Wada K, Marumo H, Yoshimura S, Ono H. Reproductive effects of nonylphenol in rats after gavage administration: a two generation study. Reprod Toxicol. 2001;15:293–315.
Article
PubMed
CAS
Google Scholar
Bhat BG, Hosea N, Fanjul A, Herrera J, Chapman J, Thalacker F, Stewart PM, Rejto PA. Demonstration of proof of mechanism and pharmacokinetics and pharmacodynamic relationship with 4′-cyano-biphenyl-4-sulfonic acid (6-amino-pyridin-2-yl)-amide (PF-915275), an inhibitor of 11 -hydroxysteroid dehydrogenase type 1, in cynomolgus monkeys. J Pharmacol Exp Ther. 2008;324:299–305.
Article
PubMed
CAS
Google Scholar
Wang L, Liu J, Zhang A, Cheng P, Zhang X, Lv S, Wu L, Yu J, Di W, Zha J, Kong X, Qi H, Zhong Y, Ding G. BVT.2733, a selective 11b-hydroxysteroid dehydrogenase type 1 inhibitor, attenuates obesity and inflammation in diet-induced obese mice. PLoS One. 2012;(7):e40056,1–10.
Hu G-X, Lin H, Lian Q-Q, Zhou S-H, Guo J, Zhou H-Y, Chu Y, Ge R-S. Curcumin as a potent and selective inhibitor of 11b-Hydroxysteroid dehydrogenase 1: improving lipid profiles in high-fat=diet-treated rats. PLoS One. 2013;8:e49976,1–7.
Article
Google Scholar
Yang O, Kim HL, Weon JI, Seo YR. Endocrine-disrupting chemicals: review of toxicological mechanisms using molecular pathway analysis. J Cancer Prev. 2015;20:12–24.
Article
PubMed
PubMed Central
Google Scholar
Kim HR, Kim YS, Yoon JA, Lyu SW, Shin H, Lim HJ, Hong SH, Lee DR, Song H, Barker DJ. Egr1 is rapidly and transiently induced by estrogen and bisphenol a via activation of nuclearestrogen receptor-dependent ERK1/2 pathway in the uterus. Reprod Toxicol. 2014;50:60–7.
Article
PubMed
CAS
Google Scholar
Chang LL, Wun Alfred WS, Wang PS. Effects and mechanisms of nonylphenol on corticosterone release in rat zona fasciculata-reticularis cells. Toxicol Sci. 2010;118:411–9.
Article
PubMed
CAS
Google Scholar
Chang LL, Wun Alfred WS, Wang PS. Effects and of nonylphenol on aldosterone release from rat zona glomerulosa cells. Chem Biol Interact. 2012;195:11–7.
Article
PubMed
CAS
Google Scholar
Bujalska IJ, Gathercole LL, Tomlinson JW, Darimont C, Ermolieff J, Fanjul AN, Rejto PA, Stewart PM. A novel selective 11beta-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis. J Endocrinol. 2008;197:297–307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reynolds RM. Glucocorticoid excess and the development origins of disease: two decades of testing the hypothesis – 2012 Curt Richter award winner. Psychoneuroendocrinology. 2013;38:1–11.
Article
PubMed
CAS
Google Scholar
Iwasaki Y, Takayasu S, Nishiyama M, Taguchi T, Asai M, Yoshida M, Kambayashi M. Hashimoto K. Is the metabolic syndrome an intracellular Cushing state? Effects of multiple humoral factors on the transcriptional activity of the hepatic glucocorticoid-activating enzyme (11β –HSD1) gene. Mol Cell Endocrinol. 2008;285:10–8.
Article
PubMed
CAS
Google Scholar
Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:1–9.
Article
CAS
Google Scholar
Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.
Article
PubMed
CAS
Google Scholar
Fotsch C, Wang M. Blockade of glucocorticoid excess at the tissue level: inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 as a therapy for type 2 diabetes. J Med Chem. 2008;51:4851–7.
Article
PubMed
CAS
Google Scholar
Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning and expression of a novel LH-induced mitochondrial protein in MA-10 mouse Leydig tumor cells: characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.
PubMed
CAS
Google Scholar
Campbell JE, Peckett AJ, D'souza AM, Hawke TJ, Riddell MC. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol. 2011;300:C198–209.
Article
PubMed
CAS
Google Scholar
Djurhuus CB, Gravholt CH, Nielsen S, Mengel A, Christiansen JS, Schmitz OE, Møller N. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab. 2002;283:E172–7.
Article
PubMed
CAS
Google Scholar
Slavin BG, Ong JM, Kern PA. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res. 1994;35:1535–41.
PubMed
CAS
Google Scholar
Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS One. 2011;6:e26223.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405:421–4.
Article
PubMed
CAS
Google Scholar
Grün F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147(6 Suppl):S50–5.
Article
PubMed
CAS
Google Scholar
Miyawaki J, Kamei S, Sakayama K, Yamamoto H, Masuno H. 4-tert-Octylphenol regulates the differentiation of C3H10T1/2 cells into osteoblast and adipocyte lineages. Toxicol Sci. 2008;102:82–8.
Article
PubMed
CAS
Google Scholar
Hao CJ, Cheng XJ, Xia HF, Ma X. The endocrine disruptor 4-nonylphenol promotes adipocyte differentiation and induce obesity in mice. Cell Physiol Biochem. 2012;30:382–94.
Article
PubMed
CAS
Google Scholar
Barker DJ. The origins of developmental origins theory. J Intern Med. 2007;261:412–7.
Article
PubMed
CAS
Google Scholar
Hiremagalur BK, Vadlamudi S, Johanning GL, Patel MS. Long-term effects of feeding high carbohydrate diet in pre-weaning period by gastrostomy: a new rat model for obesity. Int J Obes Relat Metab Disord. 1993;17:495–502.
PubMed
CAS
Google Scholar
Taylor PR, Mi-Jeong L, Kalypso K, Adam G, Susan FK. Depot dependent effects of dexamethasone on gene expression in human omental and abdominal subcutaneous adipose tissues from obese women. PLoS One. 2016;11:e0167337.
Article
CAS
Google Scholar
Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26:244–51.
Article
PubMed
CAS
Google Scholar
Kim H, Haluzik M, Asghar Z, Yau D, Joseph JW, Fernandez AM, Reitman ML, Yakar S, Stannard B, Heron-Milhavet L, Wheeler MB, LeRoith D. Peroxisome proliferator-activated receptor-alpha agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes. 2003;52:1770–8.
Article
PubMed
CAS
Google Scholar
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726–41.
Article
PubMed
CAS
Google Scholar
Bost F, Aouadi M, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie. 2005;87:51–6.
Article
PubMed
CAS
Google Scholar
Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, Marchand-Brustel YL, Binetruy B. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes. 2005;54:402–11.
Article
PubMed
CAS
Google Scholar
Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4:263–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–6.
Article
PubMed
CAS
Google Scholar
Carey GB. Mechanisms regulating adipocyte lipolysis. Adv Exp Med Biol. 1998;441:157–70.
Article
PubMed
CAS
Google Scholar
Londos C, Brasaemle DL, Schultz CJ, Adler-Wailes DC, Levin DM, Kimmel AR, Rondinone CM. On the control of lipolysis in adipocytes. Ann N Y Acad Sci. 1999;892:155–68.
Article
PubMed
CAS
Google Scholar