WHO. Arsenic; 2018. [cited 20 September 2020]. Avaiable from https://www.who.int/news-room/fact-sheets/detail/arsenic
Google Scholar
Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391–6. https://doi.org/10.1136/pmj.79.933.391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nurchi VM, Djordjevic AB, Crisponi G, Alexander J, Bjørklund G, Aaseth J. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules. 2020;10(235):1–15.
Google Scholar
Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol. 2013;87(6):969–79. https://doi.org/10.1007/s00204-012-0904-5.
Article
CAS
PubMed
Google Scholar
Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget. 2017;8(14):23905–26. https://doi.org/10.18632/oncotarget.14733.
Article
PubMed
PubMed Central
Google Scholar
Drobna Z, Styblo M, Thomas DJ. An overview of arsenic metabolism and toxicity. Curr Protoc Toxicol. 2009;42:4.31.1–6.
Google Scholar
Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011;31(2):95–107.
CAS
PubMed
Google Scholar
Peters BA, Hall MN, Ilievski V, Slavkovich V, Siddique AB, et al. Arsenic exposure, inflammation, and renal function in Bangladeshi adults: effect modification by plasma glutathione redox potential. Free Radic Biol Med. 2015;85:174–82. https://doi.org/10.1016/j.freeradbiomed.2015.04.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dangleben NL, Skibola CF, Smith MT. Arsenic immunotoxicity: a review. Environ Health. 2013;12(73):1–15.
Google Scholar
Bidisha Mukherjee DS, Mukherjee B, Bindhani B, Dutta K, Saha H, Prasad P, et al. Chronic low level arsenic exposure inflicts pulmonary and systemic inflammation. J Cancer Sci Therapy. 2014;06(03):63–9.
Article
Google Scholar
Panghal A, Sathua K, Flora SJS. Gallic acid and MiADMSA reversed arsenic induced oxidative/nitrosative damage in rat red blood cells. Heliyon. 2020;6(2):1–9.
Article
Google Scholar
Yin L, Yu X. Arsenic-induced apoptosis in the p53-proficient and p53-deficient cells through differential modulation of NFkB pathway. Food Chem Toxicol. 2018;118:849–60. https://doi.org/10.1016/j.fct.2018.06.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mochizuki H. Arsenic neurotoxicity in humans. Int J Mol Sci. 2019;20(3418):1–11.
Google Scholar
Miller AL. Dimercaptosuccinic acid (DMSA), a non-toxic, water-soluble treatment for heavy metal toxicity. Altern Med Rev. 1998;3(3):199–207.
CAS
PubMed
Google Scholar
Flora SJS, Bhadauria S, Pachauri V, Yadav A. Monoisoamyl 2, 3-Dimercaptosuccinic acid (MiADMSA) demonstrates higher efficacy by Oral route in reversing arsenic toxicity: a pharmacokinetic approach. Basic Clin Pharmacol Toxicol. 2012;110(5):449–59. https://doi.org/10.1111/j.1742-7843.2011.00836.x.
Article
CAS
PubMed
Google Scholar
Flora G, Mittal M, Flora SJS. Medical countermeasures—chelation therapy. In: Handbook of arsenic toxicology. Amsterdam: Elsevier; 2015. p. 589–626. https://doi.org/10.1016/B978-0-12-418688-0.00026-5.
Chapter
Google Scholar
Nyariki JN, Thuita JK, Wambugu AM, Nyamweya NO, Rashid K, Nyambati GK, et al. Coenzyme Q10 and endogenous antioxidants neuro-protect mice brain against deleterious effects of melarsoprol and Trypanasoma brucei rhodesiense. J Nat Sci Res. 2018;8(4):1–9.
Google Scholar
Al-Megrin AW, Soliman D, Kassab RD, Metwally DM, Moneim AE, El-Khadragy MF. Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against Lead acetate-induced renal injury in rats. Front Physiol. 2020;11(64):1–13.
Google Scholar
Yousef AO, Fahad A, Moneim AE, Metwally DM, El-Khadragy MF, Kassab RB. The Neuroprotective role of coenzyme Q10 against Lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int J Environ Res Public Health. 2019;16(16):2895–912. https://doi.org/10.3390/ijerph16162895.
Article
CAS
Google Scholar
Zhong X, Yi X, da Silveira E, Sá RC, Zhang Y, Liu K, et al. CoQ10 deficiency may indicate mitochondrial dysfunction in Cr (VI) toxicity. Int J Mol Sci. 2017;18(816):1–20.
Google Scholar
Marashi SM, Majidi M, Sadeghian M, Jafarzadeh M, Mohammadi S, Nasri-Nasrabadi Z. Protective role of coenzyme Q10 as a means of alleviating the toxicity of aluminum phosphide: an evidence-based review. Tzu Chi Med J. 2015;27(1):7–9. https://doi.org/10.1016/j.tcmj.2014.12.002.
Article
Google Scholar
Sharma A, Kshetrimayum C, Sadhu HG, Kumar S. Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants vitamin E and coenzyme Q10. Environ Sci Pollut Res. 2018;25(24):23946–53. https://doi.org/10.1007/s11356-018-2398-z.
Article
CAS
Google Scholar
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1(2):94–9. https://doi.org/10.4103/0976-500X.72351.
Article
PubMed
PubMed Central
Google Scholar
Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998;95(15):8892–7. https://doi.org/10.1073/pnas.95.15.8892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirmalek SA, Gholamrezaei BA, Yavari H, Kardeh B, Parsa Y, Salimi-Tabatabaee SA, et al. Antioxidant and anti-inflammatory effects of coenzyme Q10 on L-arginine-induced acute pancreatitis in rat. Oxidative Med Cell Longev. 2016;2016:5818479 1–9.
Article
Google Scholar
Chen SC, Chang CY, Lin ML. Vascular Hyperpermeability response in animals systemically exposed to arsenic. Int J Med Sci. 2018;15(5):425–9. https://doi.org/10.7150/ijms.23480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y, et al. Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc Natl Acad Sci U S A. 2009;106(37):15956–60. https://doi.org/10.1073/pnas.0908108106.
Article
PubMed
PubMed Central
Google Scholar
Yu F, Liao Y, Jin Y, Zhao Y, Ren Y, Lu C, et al. Effects of in utero meso-2,3-dimercaptosuccinic acid with calcium and ascorbic acid on lead-induced fetal development. Arch Toxicol. 2008;82(7):453–9. https://doi.org/10.1007/s00204-007-0267-5.
Article
CAS
PubMed
Google Scholar
Flora SJ, Bhadauria S, Pant SC, Dhaked RK. Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci. 2005;77(18):2324–37. https://doi.org/10.1016/j.lfs.2005.04.016.
Article
CAS
PubMed
Google Scholar
Flora SJ, Dube SN, Arora U, Kannan GM, Shukla MK, Malhotra PR. Therapeutic potential of meso 2,3-dimercaptosuccinic acid or 2,3-dimercaptopropane 1-sulfonate in chronic arsenic intoxication in rats. Biometals. 1995a;8:111–6.
Article
CAS
PubMed
Google Scholar
Flora SJ, Mathur S, Mathur R. Effects of meso-2,3-dimercaptosuccinic acid or 2,3-dimercaptopropane-1-sulfonate on beryllium-induced biochemical alterations and metal concentration in male rats. Toxicology. 1995b;95(1-3):167–75. https://doi.org/10.1016/0300-483X(94)02903-8.
Article
CAS
PubMed
Google Scholar
Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2007;1(6):3159–65.
Article
Google Scholar
Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, et al. Oral administration of coenzyme Q10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int. 2019;71(2019):106–20. https://doi.org/10.1016/j.parint.2019.04.010.
Article
CAS
PubMed
Google Scholar
Barai M, Ahsan N, Paul N, Hossain K, Rashid MA, Kato M, et al. Amelioration of arsenic-induced toxic effects in mice by dietary supplementation of Syzygium cumini leaf extract. Nagoya J Med Sci. 2017;79(2):167–77.
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Huo J, Ding X, Yang M, Li L, Dai J, et al. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKIIMediated PDE4 inhibition. Sci Rep. 2017;7(8253):1–12.
Google Scholar
Bour S, Carmona MC, Galinier A, Caspar-Bauguil S, Van Gaal L, Staels B, et al. Coenzyme Q as an antiadipogenic factor. Antioxid Redox Signal. 2011;14(3):403–13. https://doi.org/10.1089/ars.2010.3350.
Article
CAS
PubMed
Google Scholar
Poller W, Nahrendorf M, Swirski FK. Hematopoiesis and cardiovascular diseases. Circ Res. 2020;126(8):1061–85. https://doi.org/10.1161/CIRCRESAHA.120.315895.
Article
CAS
PubMed
Google Scholar
Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–20. https://doi.org/10.1038/s41580-019-0103-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ola-Davies OE, Akinrinde AS. Acute sodium Arsenite-induced hematological and biochemical changes in wistar rats: protective effects of ethanol extract of Ageratum conyzoides. Pharm Res. 2016;8:26–S30.
Google Scholar
Gupta R, Flora SJS. Protective value of Aloe vera against some toxic effects of arsenic in rats. Phytother Res. 2005;19(1):23–8. https://doi.org/10.1002/ptr.1560.
Article
PubMed
Google Scholar
Niklowitz P, Sonnenschein A, Janetzky B, Andler W, Menke T. Enrichment of coenzyme Q10 in plasma and blood cells: defense against oxidative damage. Int J Biol Sci. 2007;3(4):257–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakur AS, Littaru GP, Moesgaard S, Dan Sindberg C, Khan Y, Singh CM. Hematological parameters and RBC TBARS level of Q 10 supplemented tribal sickle cell patients: a hospital based study. Indian J Clin Biochem. 2013;28(2):185–8. https://doi.org/10.1007/s12291-012-0277-9.
Article
CAS
PubMed
Google Scholar
McConville MJ, Ralph SA. Chronic arsenic exposure and microbial drug resistance. Proc Natl Acad Sci U S A. 2013;110(49):19666–7. https://doi.org/10.1073/pnas.1319659110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Binet F, Cavalli H, Moisan É, Girard D. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis. Br J Haematol. 2006;132(3):349–58. https://doi.org/10.1111/j.1365-2141.2005.05866.x.
Article
CAS
PubMed
Google Scholar
Taheri M, Mehrzad J, Afshari R, Saleh-Moghaddam M, Hosein M, Gharaie M. Inorganic arsenic can be potent granulotoxin in mammalian neutrophils in vitro. J Immunotoxicol. 2016;13(5):686–93. https://doi.org/10.3109/1547691X.2016.1159625.
Article
CAS
PubMed
Google Scholar
Yuanyuan Z, Shasha W, Chunyan C, Xiao W, Qunye Z, Fan J. Arsenic primes human bone marrow CD34+ cells for Erythroid differentiation. Bioinorg Chem Appl. 2015;2015:1–6.
Google Scholar
Singh N, Kumar D, Sahu AP. Arsenic in the environment: effects on human health and possible prevention. J Environ Biol. 2007;28(2):359–65.
CAS
PubMed
Google Scholar
Caciari T, Capozzella A, Tomei F, Nieto HA, De Sio S, Montuori L, et al. Arsenic and peripheral blood count in workers exposed to urban stressors. La Clinica Terapeutica. 2012;163(5):e293–302.
CAS
PubMed
Google Scholar
Masamoto Y, Nannya Y, Arai S, Koike Y, Hangaishi A, Yatomi Y, et al. Evidence for basophilic differentiation of acute promyelocytic leukaemia cells during arsenic trioxide therapy. Br J Haematol. 2009;144(5):798–9. https://doi.org/10.1111/j.1365-2141.2008.07507.x.
Article
PubMed
Google Scholar
Budak YU, Polat M, Huysal K. The use of platelet indices, plateletcrit, mean platelet volume and platelet distribution width in emergency non-traumatic abdominal surgery: a systematic review. Biochemia Medica. 2016;26(2):178–93.
Article
PubMed
PubMed Central
Google Scholar
Wu Y, Dai J, Zhang W, Yan R, Zhang Y, Ruan C, et al. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH 2-terminal kinase activation. PLoS One. 2014;9(1):1–7.
Google Scholar
Afolabi OK, Wusu AD, Ogunrinola OO, Abam EO, Babayemi DO, Dosumu OA, et al. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water. BMC Pharmacol Toxicol. 2015;16(1):1–15.
Article
CAS
Google Scholar
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(71):1–22.
Google Scholar
Mondal P, Chattopadhayay A. Environmental exposure of arsenic and fluoride and their combined toxicity: a recent update. J Appl Toxicol. 2019;40:522–66.
Google Scholar
Maiti S, Chatterjee AK. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch Toxicol. 2001;75(9):531–7. https://doi.org/10.1007/s002040100240.
Article
CAS
PubMed
Google Scholar
Tolins M, Ruchirawat M, Landrigan P. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health. 2014;80(4):303–14. https://doi.org/10.1016/j.aogh.2014.09.005.
Article
PubMed
Google Scholar
Islam K, Haque A, Karim R, Fajol A, Hossain E, Salam KA, et al. Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh. Environ Healt. 2011;10(1):1–11.
Article
Google Scholar
Li C, Li P, Tan YM, Lam SH, Chan ECY, Gong Z. Metabolomic characterizations of liver injury caused by acute arsenic toxicity in zebrafish. PLoS One. 2016;11(3):1–18.
Google Scholar
Hong YS, Song KH, Chung JY. Health effects of chronic arsenic exposure. J Prev Med Public Health. 2014;47(5):245–52. https://doi.org/10.3961/jpmph.14.035.
Article
PubMed
PubMed Central
Google Scholar
Kalakonda A, John S. Physiology, bilirubin. Treasure Island: StatPearls; 2018.
Google Scholar
Tsuboya T, Kuriyama S, Nagai M, Hozawa A, Sugawara Y, Tomata Y, et al. Gamma-Glutamyltransferase and cancer incidence: the Ohsaki cohort study. J Epidemiol. 2012;22(2):144–50. https://doi.org/10.2188/jea.JE20110071.
Article
PubMed
PubMed Central
Google Scholar
Hanigan MH. Gamma-glutamyl transpeptidase: redox regulation and drug resistance. In: Advances in cancer research. Vol. 122: Academic; 2014. p. 103–41.
Google Scholar
Zhang H, Forman HJ, Choi J. GGT in glutathione biosynthesis.Pdf. Methods Enzymol. 2005;401:468–83. https://doi.org/10.1016/S0076-6879(05)01028-1.
Article
CAS
PubMed
Google Scholar
Rana MN, Tangpong J, Rahman MM. Toxicodynamics of Lead, cadmium, mercury and arsenic- induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep. 2018;5:704–13. https://doi.org/10.1016/j.toxrep.2018.05.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87. https://doi.org/10.1038/nm.3893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7. https://doi.org/10.1038/ni.1703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gokulan K, Arnold MG, Jensen J, Vanlandingham M, Twaddle NC, Doerge DR, et al. Exposure to arsenite in CD-1 mice during juvenille and adult stages: effects on intestinal microbiota and gut-associated immune status. Mol Biol. 2018;9(4):e01818.
Google Scholar
Sun X, He Y, Guo Y, Li S, Zhao H, Wang Y, et al. Arsenic affects inflammatory cytokine expression in gallus gallus brain tissues. BMC Vet Res. 2017;13(157):1–10.
Google Scholar
Sinha D, Mukherjee B, Bindhani B, Dutta K, Saha H, Prasad P, et al. Chronic low level arsenic exposure inflicts pulmonary and systemic inflammation. J Cancer Sci Therapy. 2014;6(3):62–9.
Google Scholar
Schmelzer C, Linder I, Rimbach G, Niklowitz P, Menkle T, Doring F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors. 2008;32(1-4):179–83. https://doi.org/10.1002/biof.5520320121.
Article
CAS
PubMed
Google Scholar
Chepukosi K, Okanya P, Nyariki JN, Amwayi P, Jillani N, Isaac AO. Coenzyme Q10 nullified khat-induced hepatotoxicity, nephrotoxicity and inflammation in a mouse model. Heliyon. 2020;6:1–11.
Google Scholar
Flora SJS, Chouhan S, Kannan GM, Mittal M, Swarnkar H. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxidative Med Cell Longev. 2008;1(1):39–45. https://doi.org/10.4161/oxim.1.1.6481.
Article
Google Scholar
Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9(44):1–11.
Google Scholar